Magnetism and magneto-optical effects in bulk and few-layer CrI₃: A Theoretical GGA + U study

VIJAY KUMAR GUDELLI Physics Division National Center for Theoretical Sciences

Outline of the talk:

- Facts and findings about the CrI₃ materials
- Magneto-optical (MO) properties
- Computational details
- Results and discussion
- Conclusion

Facts and Findings about CrI₃:

- CrI₃ is polymorphic material
 - Monoclinic AlCl₃-type structure (SG: *C2/m*) at room temperature
 - Rhombohedral BiI₃-type structure (SG: *R*-3) below 240 K temperature
- Recent study confirms that rhombohedral (*R*-3) phase is the more stable than the monoclinic (*C*2/*m*) phase
- Cleavage energy of CrI_3 is 0.30 J/m^2 , which is less than well-known graphite of (0.43 J/m²) and MoS₂ of 0.27 J/m² confirms this material can be easily exfoliated as layered materials (which is evident from the experimental studies in the recent years)

Facts and Findings about CrI₃:

- Bulk crystalline CrI_3 is a layered Ising ferromagnetic material below a Curie temperature (T_C) of 61 K with an out-of-plane easy axis^{*}
- The van der Waals nature in bulk CrI₃ along with the magnetocrystalline anisotropy, the ferromagnetic nature is retained even in monolayer CrI₃[#]
- The observed monolayer $T_{\rm C}$ of 45 K which is very close to the bulk Tc of 61 K, which suggests that the ferromagnetic monolayer of CrI₃ are weakly coupled to their substrates and can be regarded as isolated magnets[#]
- Recent study of Magneto-Optical Kerr-Effect (MOKE) in the layered ferromagnetic CrI_3 materials creates opportunities for studying magnetism in atomically thin materials, which finds application in spintronics and magneto-electronics devices

Figure 3 | Layer-dependent magnetic ordering in atomically-thin CrI₃. a, MOKE signal on a monolayer (1L) CrI₃ flake, showing hysteresis in the Kerr rotation as a function of applied magnetic field, indicative of ferromagnetic behaviour. b, MOKE signal from a bilayer CrI₃ showing vanishing Kerr rotation for applied fields ± 0.65 T, suggesting antiferromagnetic behaviour. Insets depict bilayer (2L) magnetic ground states for different applied fields. c, MOKE signal on a trilayer (3L) flake, showing a return to ferromagnetic behaviour.

What are magneto-optical effects and how it will appear in magnetic materials?

Relativistic (spin-orbit coupling induced) effects in magnetic solids:

- ✓ Orbital magnetization
- ✓ X-ray circular dichroism
- ✓ Perpendicular magneto-crystalline anisotropy in multilayers
- ✓ Joule (anisotropic) magnetostriction
- ✓ Magneto-electric coupling

...

✓ Magneto-optical effects (Faraday rotation and Kerr effect)

Fundamental cause: the simultaneous occurrence of electron spin-polarization and relativistic interaction (spin-orbit coupling) in the magnetic solids

Magneto-optical properties:

Faraday Effect (1845): The rotation of the polarization plane of linearly polarized light upon *transmission* through a magnetic material

Kerr Effect (1888): The rotation of the polarization plane of linearly polarized light upon *reflection* from the surface of a magnetic material

How to get the Magneto-optical properties:

Optical conductivity is the key ingredient for evaluating the magneto-optical properties

- The *absorptive parts* of the optical conductivity (σ'_{xx} and σ''_{xy}) have direct physical interpretations of MO properties, i. e.,
- The *real diagonal* elements measures the average in absorptions of left- and right-circularly polarized lights

$$\sigma'_{xx}(\omega) = \frac{\lambda}{\omega} \sum_{k,jj'}^{n} \left[\left| \Pi_{jj'}^{+} \right|^{2} + \left| \Pi_{jj'}^{-} \right|^{2} \right] \delta(\omega - \omega_{jj'})$$

• The *imaginary off-diagonal* elements is equal to the difference of left- and right-circularly polarized lights

$$\sigma_{xy}''(\omega) = \frac{\lambda}{\omega} \sum_{k,jj'} \left[\left| \Pi_{jj'}^+ \right|^2 - \left| \Pi_{jj'}^- \right|^2 \right] \delta(\omega - \omega_{jj'})$$

See here for more details: Feng et al, 2D Mater. 4, 015017 (2017)

How to get the Magneto-optical properties:

- The *dispersive parts* of the optical conductivity (σ''_{xx} and σ'_{xy}) are calculated from absorptive parts using the Kramers-Kronig relation
- The *real diagonal* elements of dispersive is:

$$\sigma_{xx}^{\prime\prime}(\omega) = -\frac{2\omega}{\pi} \operatorname{P} \int_0^\infty \frac{\sigma_{xx}^{\prime}(\omega^{\prime})}{\omega^{\prime 2} - \omega^2} d\omega^{\prime}$$

• The *imaginary off-diagonal* elements of dispersive is:

$$\sigma'_{xy}(\omega) = \frac{2}{\pi} \operatorname{P} \int_0^\infty \frac{\omega' \sigma''_{xy}(\omega')}{\omega'^2 - \omega^2} d\omega'$$

See here for more details: Feng et al, 2D Mater. 4, 015017 (2017)

How to get the Magneto-optical properties:

Kerr-effect: Complex polar Kerr angle for a magnetic thin-film, combining the rotation angle θ_K and ellipticity ϵ_K , is written as

$$\theta_{K} + i\epsilon_{K} = i\frac{2\omega d}{c}\frac{\sigma_{xy}}{\sigma_{xx}^{s}}$$

c is the speed of light in vacuum and

 σ_{xx}^{S} is the optical conductivity of a nonmagnetic substrate

Faraday-effect: The complex polar Faraday angle for a magnetic thin-film system is given by

$$\theta_F + i\epsilon_F = \frac{\omega d}{2c} \left(n_+ - n_- \right)$$

 n_+ and n_- represent the refractive indices for left- and right-handed polarized lights

$$n_{\pm}^2 = 1 + \frac{4\pi i}{\omega} (\sigma_{xx} \pm i\sigma_{xy})$$

See here for more details: Feng et al, 2D Mater. 4, 015017 (2017)

Computational Details:

- Projector augmented wave (PAW) method as implemented in the Vienna ab-initio simulation pack-age (VASP)
- Generalized gradient approximation of Perdew-Burke-Ernzerhof (PBE) parametrization is used for the exchangecorrelation potential
- A plane-wave energy cut-off of 400 eV is used throughout the calculations
- K-mesh: 16 x 16 x 16 for bulk, 20 x 20 x 1 for layered structures
- To properly take into account of the Coulomb repulsion among the Cr 3d electrons, we perform the GGA + U calculations which give a better description of the 3d electron systems, with U = 1 eV
- Fully relativistic projector augmented potentials are used to include the spin-orbit coupling

Bulk

Mono

Mono layer (side view) CrI₃

Effect of onsite Coulomb potential:

- We perform a series of the GGA+U calculations with the U value ranging from 0 to 3 eV for all the considered CrI_3 systems
- The calculated physical quantities (magnetic moment, magnetic anisotropy energy and band gap) do not depend significantly on the U value used
- This suggest that the results presented here remain more or less unchanged if a different U value were used

Magnetic moment:

	GGA+U (U = 1 eV)	
	Cr-Magnetic moment (μ_B/fu)	I-Magnetic moment (μ_B/fu)
Bulk	3.20 (3 .00 [*])	-0.094
ML	3.21	-0.092
BL	3.21	-0.094
TL	3.21	-0.093

- The calculated spin magnetic moment of Cr of all the CrI_3 structures is about ~ 3.2 μ_B , which is in good agreement with the experimental value of 3.0 μ_B
- This is also consistent with three unpaired electrons in the Cr t_{2g} configuration in these structures
- Interestingly, there is also a small induced magnetic moment (-0.09 μ_B) on the I atom, which is antipallel to that of the Cr magnetic moment, in all the systems
- All these result in a total magnetic moment of 3.00 μ_B /fu for all the structures

Magnetic exchange coupling constant (*J*):

- Among the magnetic properties of FM materials, magnetic ordering temperature (T_c) is very important quantity, to estimate the T_c one need to calculate the exchange coupling constant (J)
- We calculated the exchange coupling parameters by mapping the total energies of different magnetic configurations with the classical Heisenberg Hamiltonian,

 $E = E_0 - \sum_{i,j} J_{ij} \,\widehat{e_i} \,.\, \widehat{e_j}$

where, E_0 is the nonmagnetic ground state energy; J_{ij} is the exchange coupling parameter between sites i and j; \hat{e}_i the unit vector representing the direction of the magnetic moment on site *i*,

• The FM state is the most stable configuration for all the considered structures from the calculated total energies

• For the *intra exchange* mechanism in the CrI₃ structures, we have considered four intra layer magnetic configurations one FM, three antiferromagnetic (AF) structures, labelled as AF-Néel, AF-zigzag, and AF-stripe

Magnetic properties: Intra-layer exchange coupling

Structures	J ₁ (meV)	J ₂ (meV)	J ₃ (meV)
ML	6.91 (6.4404)	1.48 (1.4364)	-0.46 (-0.3447)
BL	7.59	2.30	1.02
TL	8.05	2.45	0.91
Bulk	8.08	2.89	1.62

- The J₁ is positive, suggest a strong FM nature among the Cr-Cr in all the investigated structures, consistent with the total energies of FM stable state
- The J_2 is also FM (positive), the J_2 value is about 3.5 times smaller than J_1
- All the exchange interaction parameters are increasing monotonically with increasing the number of layers, which remark that the magnetic nature is strengthening as we move from ML to bulk via BL and TL

Magnetic properties: Inter-layer exchange coupling

Structures	J _z (meV)
BL	2.97
TL	2.85
Bulk	2.95

- The calculated interlayer exchange coupling constant J_z is also ferromagnetic for bulk, BL and TL structures
- This prediction agrees well with all previous experiments on all the structures except BL CrI₃ which has been found to be interlayer AFM
- All studies showed that the interlayer magnetic coupling in BL CrI₃ is strongly stacking dependent and is also sensitive to the exchangecorrelation functional used
- GGA+U calculation with U=3 eV indicates that in the AB'-stacked BL CrI_3 , the total energy of the AF configuration is slightly lower than that of the FM configuration (by merely~0.7 meV/unit cell), and this also confirmed by our own GGA+U calculations
- Clearly, further measurements on the stacking order in BL CrI_3 are needed to resolve this interesting problem

Magnetic Anisotropic Energy (MAE):

- Magneto anisotropy energy is the total energy difference between the easy axis and hard axis magnetizations, i. e. $\Delta E_{MAE} = E_{100} \sim E_{001}$, which also refers as the energy require to flip the magnetization from easy axis to the hard axis direction
- MAE is particularly important for 2D magnetic materials
- According to the Mermin–Wagner theorem, a long-range magnetic order could not occur at any finite temperature in a 2D isotropic Heisenberg magnetic structure because of large thermal spin fluctuations
- However, this restriction can be lifted if the 2D system has a significant out-of-plane MAE, which suppress the thermal fluctuations and thus stabilize the long-range magnetic order at finite temperature
- For magnetic solids the MAE contributions arises mainly from two contributions

(a) first one is from the magnetocrystalline anisotropy energy (MCE) (ΔE_b) in the electronic band structure due to the simultaneous occurrence of the electron spin-orbit interaction and the spin polarization

(b) Second one is from the magnetic dipolar anisotropy energy (MDE) (ΔE_d) caused by the magnetostatic interaction in the magnetic solid

^{*}Mermin et. at., Phys. Rev. Lett., 17,1133 (1966) Tung et. at., Phys. Rev. B 76, 094413 (2007)

Magnetic Anisotropic Energy (MAE (meV/FU)):

Structures	MCE (ΔE_b)	MDE (ΔE_d)	ΔE_{MAE}
ML	0.678 (0.686)	-0.152	0.526
BL	0.620	-0.152	0.468
TL	0.586	-0.152	0.434
Bulk	0.545	-0.064	0.481 (0.26)

- The MDE is *negative* prefers an *in-plane* magnetization, and the MCE is *positive* prefers the *out-of-plane* magnetization
- MDE < MCE, prefers the out-of-plane magnetization in all the systems
- The present obtained MAE of the ML CrI₃ structure is quantitatively in good agreement with the previously reported value of 0.686 meV/f.u.
- The calculated MAE of bulk CrI₃ agree reasonably well with the experimental reported value
- Interestingly, the MAEs of the CrI₃ multilayers are large and comparable to magnetic alloys such as FePt and CoPt
- The large MAEs could be attributed to two factors, namely, the quasi-2D structures of these materials and also the large SOC of the heavy ligand ion (I), these could have valuable applications in high density data storage devices

Magnetic properties: Transition temperature (T_c)

Structures	$T_c^M(K)$	$T_c^{SWT}(T_c^{exp})(K)$
ML	109	66 (45)
BL	165	69
TL	172	71
Bulk	191	73 (61)

- T_c within the mean-field approximation (MFA), i.e., $T_c^M = \frac{1}{3} \frac{J_0}{k_p}$, where $J_0 = 3J_1 + 6J_2 + 3J_3 + J_z$
- The estimated T_c^M and measured T_c agree in trend, i.e. the T_c^{B} increases monotonically from ML, to BL, to TL and to bulk CrI₃
- However, T_c^M is much higher compared to the experimental reports, the reason for this is, MFA neglects transverse spin fluctuations, which is especially strong in low-dimensional materials
- Furthermore, the MFA violates Mermin–Wagner theorem
- But, the out-of-plane MAE in 2D materials can establish long-range magnetic orders at finite temperatures by opening a gap in the spin wave spectrum which would suppress thermal spin fluctuations
- Based on the spin wave theory (SWT) with the out-of-plane MAE taken into account, $T_c = \frac{\pi J_1}{2\log(1 + \frac{2\pi J_1}{\Delta_0})}$, where Δ_0 is the spin wave gap, which can be roughly set to $\Delta_0 = \Delta E_{ma}$
- Compared with T_c^M , the T_c^{SWT} values agree better with the corresponding experimental values

Gudelli et al, New J. Phys. 21 053012 (2019)

Band gap:

	GGA+U (U = 1 eV)
	Band gap (eV)
Bulk	0.62 (1.2 ^{&})
ML	0.81 (0.91 with PBE 1.64eV with HSE) [#]
BL	0.71
TL	0.68

- The calculated band gaps values of bulk CrI₃ is much smaller when compared to the experimental reported values
- The band gap increases slightly as bulk CrI_3 is thinned down to TL, to BL and finally to ML

Spin-polarised band-structure: CrI₃-Bulk and multi-layer

- The lower conduction bands and top valence bands of all the structures are of purely spin-up character
- This shows that all the structures are single-spin semiconductors and thus would be promising candidates for efficient spintronic and spin photovoltaic devices

Spin-polarised density of states of CrI₃-Bulk:

- The contributions to the valance and conduction bands mostly from the Cr-*d* orbitals with significant contributions from the I-*p* orbitals
- Contributions from both the Cr and I confirm the strong hybridization between Cr-d and I-p orbitals in CrI_3 structures
- The states in the upper valance band region of -4.3 eV to -0.3 eV are made up of spin-up $\operatorname{Cr-d}_{xy,x}^2_{-y}^2$ orbitals
- Conduction bands ranging from 0.4 eV to 1.2 eV is mainly because of spin-up Cr-d_{xz,yz} orbitals
- The band gap in the CrI_3 structures arise due to the crystal-field splitting of spin-up $Cr-d_{xy,x}^2-y^2$ and $d_{xz,yz}$ bands
- Conversely, the DOS spectrum in spin-down valance band region are mostly contributed from I-*p* orbitals
- The spin-down conduction bands appear only above 1.3 eV with pronounced peaks of mainly Cr $d_{xy,x}2_{-y}2$ and d_z2 orbitals

Spin-polarised density of states of CrI₃-ML:

- The calculated total spin-up and spin-down DOS spectra of ML-CrI₃ are rather similar to that of bulk CrI₃
- The main difference comes from the contributions of the I-*p* orbital which is enhanced in the higher energy region in the ML
- A similar profile is observed in BL and TL structures

Relativistic Band-structure: CrI₃-Bulk and multilayers

- Bulk CrI₃ show an indirect bandgap semiconductor whereas multi-layers shows the direct bandgap semiconducting nature
- In bulk, the valance band maximum (VBM) exist at Γ-point and the conduction band minimum (CBM) located at T point
- In case of multilayers VBM and CBM are exist at Γ-point, shows direct bandgap semiconducting nature

Optical conductivity: CrI₃-bulk

- The optical conductivity elements for an in-plane electric polarization (E||ab) (σ_{xx}) differ significantly from that for the out-of-plane electric polarization (E||c) (σ_{zz}) above the absorption edge of about 1.5 eV
- The $\sigma_{xx}^1 > \sigma_{zz}^1$ for bulk CrI₃ in the energy range from 1.5 to 4.4 eV, above this energy $\sigma_{xx}^1 < \sigma_{zz}^1$
- This manifests that these structures are highly optically anisotropic
- Both Positive and Negative peak exits in real (σ_{xy}^1) and imaginary (σ_{xy}^2) parts of the off-diagonal optical conductivity elements, which is due to the inter-band transitions are dominated by left- or right-polarized-light (LCP and RCP) induced excitations
- σ_{xy}^1 shows a large positive peaks at 3.5 and 4.2 eV, σ_{xy}^2 spectra shows at 4.8 eV for the bulk
- Negative peaks occurs in the vicinity of 1.3 eV in the σ_{xy}^1 spectrum and at 3.3 eV in the σ_{xy}^2 spectrum for bulk

Optical conductivity: ML CrI₃:

- ★ A similar profile of bulk optical conductivity is observed in ML CrI₃ in the energy region of 1.0-4.3 eV, where $\sigma_{xx}^1 > \sigma_{zz}^1$, above 4.3 eV, $\sigma_{xx}^1 < \sigma_{zz}^1$
- ★ The overall profile of the optical spectra in both bulk and ML are rather similar there exist a significant difference in σ_{xx} and σ_{zz} , where, the difference among the E||ab and E||c found to be high compared to bulk structure

Optical conductivity: CrI₃-BL and TL:

- A similar profile is observed in BL and TL structures, as that of ML
- The observed strong optical anisotropy is quite common in low dimensional materials and can be explained in terms of the orbital decomposed DOS
- As seen earlier from DOS, the upper valance band energy region of -4.5 to -0.3 eV, the dominate states are mainly from Cr-d $d_{xy,x}^2 - y^2$ orbitals
- The $d_{xy,x}^{2} \frac{2}{y} (d_{z}^{2})$ states can be exited by only ELC (E||c) polarized light while $\operatorname{Cr} d_{xz,yz}$ orbitals can be exited by light of both polarization, this suggests $\sigma_{xx}^{1} > \sigma_{zz}^{1}$ in the low energy region up to 4.3 eV

Optical conductivity: comparison with experiments

- Three peaks $(A_1, A_2 \text{ and } A_3)$ in the experimental differential reflection spectrum of bulk and ML CrI_3 agree very well with the theoretical ones in both shape and position, although the magnitude of the experimental spectrum is slightly smaller
- This indicates that our GGA+U calculations could describe the optical properties of CrI₃ quite well
- Assuming photoluminescence (PL) intensity (I) is proportional to photoabsorption (σ), PL circular polarization $\rho = \frac{I_+ - I_-}{I_+ + I_-} = \frac{\sigma_+^1 - \sigma_-^1}{\sigma_+^1 + \sigma_-^1} = \frac{\sigma_{xy}^2}{\sigma_{xx}^1}$
- $\sigma_{xy}^2 = \rho \sigma_{xx}^1$ estimated this way based on the calculated σ_{xx}^1 and experimental ρ for ML CrI₃, which agree well with peak P₁ in the theoretical σ_{xy}^2 spectrum

Gudelli et al, New J. Phys. 21 053012 (2019)

- Overall behaviour of the MO spectra for all the investigated structures is similar
- The θ_K^{max} angle occurs at 4.3 eV for the bulk (-2.1°) and at 4.2 eV for the TL (-1.3°), at 1.3 eV for the ML(0.6°) and 4.2 eV for the BL (-1.0°)
- Similarly, ε_K^{max} near 4.8 eV for the bulk (-1.9°), at 3.3 eV for the ML(1.2°) and at 4.8 eV for BL (-1.2°) and TL (-1.3°)
- The measured and calculated θ_K values of bulk and ML CrI₃ would be in very good agreement, although the experimental θ_K values of BL and TL CrI₃ are much larger

<u>3*d* transition metals</u>: MnBi thin films, θ_K^{max} is 2.3° at 1.84 eV, for Pt based materials θ_K is 0.4-0.5° in FePt, Co₂Pt, and PtMnSb, which is due to the strong SOC of the Pt

3d transition semiconductor:

- $Ga_{1-x}Mn_xAs$ Kerr rotation angles of ~0.4° at 1.80 eV, $Y_3Fe_5O_{12}$ exhibits a significant Kerr rotation of 0.23° at 2.95 eV
- $Cr_2Ge_2Te_6$ has a θ_K value of ~0.14° for bulk, 0.0007° in BL, 0.002° in TL

Gudelli et al, New J. Phys. 21 053012 (2019)

Magneto-optical Faraday effect:

- θ_F^{max} exists at 4.3 eV for the bulk (-60°/µm) and the TL (-194°/µm), at 4.7 eV for the ML(-85°/µm) and the BL (-155°/µm)
- ε_F^{max} near 4.8 eV for all the structures with 48°/µm, -85°/µm, -148°/µm and 170°/µm for the bulk, ML, BL and TL, respectively
- The measured Faraday rotation θ_F of bulk CrI₃ are almost in perfect agreement with our theoretical prediction
- MnBi films possess the largest θ_F angle of ~80 deg/µm, Y₃Fe₅O₁₂ show only 0.19 deg/µm at 2.07 eV, the replacement of Y with Bi has improved the θ_F by ~35 deg/µm at 2.76 eV making Bi₃Fe₅O₁₂ an outstanding MO material
- Clearly, in anyway the calculated Faraday rotation of the CrI₃ multilayers are comparable to that of prominent bulk MO metals

Conclusion:

- \checkmark We find that both intralayer and interlayer magnetic couplings are strongly ferromagnetic in all the considered CrI₃ structures
- ✓ Ferromagnetic ordering temperatures estimated based on calculated exchange coupling parameters agree quite well with the measured ones
- ✓ All the structures have a large out-of-plane MAE of ~0.5 meV/Cr, these large MAEs suppress transverse spin fluctuations in atomically thin CrI_3 films and thus stabilize long-range magnetic orders at finite temperatures
- ✓ All the structures exhibit strong MO Kerr and Faraday effects, MO Kerr rotations up to ~2.6° are found, comparable to famous MO materials such as FM semiconductor $Y_3Fe_5O_{12}$ and metal PtMnSb
- ✓ Calculated MO Faraday rotation angles are also large, being up to $\sim 200^{\circ}/\mu m$, and they are comparable to that of best known MO semiconductors such as Y₃Fe₅O₁₂ and Bi₃Fe₅O₁₂
- ✓ Calculated optical conductivity spectra, MO Kerr and Faraday rotation angles agree quite well with available experimental data
- \checkmark Our findings of large out-of-plane MAEs and strong MO effects in these FM semiconducting CrI₃ ultrathin films suggest that they will find promising applications in high density semiconductor MO, low power spintronic nanodevices as well as efficient spin-photovoltaics

Acknowledgements:

- Prof. Guo, Guang-Yu, National Taiwan University and NCTS, Taiwan
- Physics Division, NCTS

Thank You !!!