First Principles Study of Superconductivity in FeSe

Ting-Wei Chang

Outline

- Superconductivity
- Iron-based Superconductors
 - Typical iron-based superconductors
 - Structural and magnetic properties of FeSe
- Calculation Results of FeSe
- Conclusion

Superconductivity

- First discovered by H. K. Onnes^[1] (1911)
 - Mercury with zero resistivity when T < 4.2 K
- Properties when $T < T_C$
 - Zero resistance
 - Expels magnetic fields, leaving no magnetic field inside (Meissner effect)

BCS Theory

- Electron-Phonon Interaction:
 - Cooper Pairs^[1]
 - Condition: $\epsilon_F \hbar \omega_D < \epsilon_k < \epsilon_F + \hbar \omega_D^{[2]}$

• BCS Equation:

•
$$kT_c = 1.14\hbar\omega_D \exp\left[-\frac{1}{D(\epsilon_F)V}\right]^{[2]}$$

[1]: L. N. Cooper, Phys. Rev. 104, 1189 (1956)[2]: Bardeen, Cooper and Schrieffer, Phys. Rev. 108, 1175 (1957)

McMillan's formula

- Electron-Phonon Coupling Strength:^[1]
 - $\lambda = 2 \int_0^\infty \frac{1}{\omega} [\alpha^2 F(\omega)] d\omega$
- McMillan's formula:^[1]

•
$$T_c = \frac{\omega_{log}}{1.2} \exp[\frac{-1.04(1+\lambda)}{\lambda - \mu^*(1+0.62\lambda)}]$$

• $\mu^*: 0.10 \sim 0.16$

[1]: W. L. McMillan, PhysRev.167.331 (1968)

Typical Iron-based Superconductors

• Tetragonal-orthorhombic structural transition at T_s

4-fold symmetry

2-fold symmetry

Top view of tetragonal structure

Top view of orthorhombic structure

- stripe-AFM transition at T_N
 - Symmetry breaking

Stripe Anti-Ferromagnetic State

Checkerboard AFM

Stripe AFM Symmetry breaking $(\sqrt{2} \times \sqrt{2})$ super-cell

Example: $La(O_{1-x}F_{x})FeAs$

- Undoped LaOFeAs:
 - Structure transforms from tetragonal (*P4/nmm*) to orthorhombic (*Cmme*) below T_s (150 K) ^[1]
 - Magnetism transforms to stripe-AFM below T_N (134 K) ^[1]
 - No superconductivity
- Doped La(O_{1-x}F_x)FeAs: (x = 0.05-0.12)
 - Tetragonal structure (*P4/nmm*). No T_s and T_N .
 - Superconductivity occurs below T_c (26 K) ^[2]

Structure of LaOFeAs ^[2]

[1] M. Rotter, PRB 78, 020503 (2008)[2] Y. Kamihara, JACS , 130, 3296 (2008)

Structural and Magnetic Properties of FeSe

- Tetragonal (*P4/nmm*) to orthorhombic (*Cmme*), *T_s* = 90 K at ambient pressure
- No magnetic transition at ambient pressure, having T_c (8.5 K)
- Stripe-AFM above 2.4 GPa, no T_s

[1] P. S. Wang, PRL 117, 237001 (2016)

Purpose

- Study superconductivity of orthorhombic FeSe at ambient pressure with
 - Density Functional Theory (DFT)
 - Density Functional Perturbation Theory (DFPT)
- Calculate the superconducting temperature T_c of FeSe with McMillan's formula

Structure of FeSe (low T)

- Base-centered orthorhombic
- *Cmme* (Group 67)
- Parameters:
 - *a, b, c*: lattice constants
 - z: chalcogen height (distance between Fe and Se layers)

Structure of FeSe (low T)

Top view of the structure $(a \approx b)$

Side view of the structure

Structures for Calculations

- Structure A:
 - Lattice constants and atom positions from the experiments ^[1]
- Structure B:
 - Fully relax the lattice constants and atoms
- Structure C:
 - Relax only atoms, lattice constants fixed
- Relaxation method
 - PBE potential + Van der Waals correction with VASP
 - Non-magnetic Structure

Experimental Lattice Constants

High Temperature Data; <i>P4/nmm</i> (tetragonal structure)								
<i>a</i> (Å)		<i>c</i> (Å)	Z	Р	Т (К)			
3.774		5.525	0.265	ambient	295] [1		
Low Temperature Data; Cmme (orthorhombic structure)								
<i>a</i> (Å)	b (Å)	<i>c</i> (Å)	Z	Р	Т (К)			
5.308	5.334	5.486	0.265	ambient	5	[1		

Lattice Constants of the Structures

	<i>a</i> (Å)	b (Å)	<i>c</i> (Å)	Z
Structure A ^[1]	5.3078	5.3342	5.486	0.2653
Structure B	5.1723	5.1726	5.4143	0.2563
Structure C	5.3078	5.3342	5.486	0.2436

Structure B and C are orthorhombic (Cmme), same as Structure A

[1] S. Margadonna, Y. Takabayashi, Chem. Commun. 5607 (2008)

Calculation Method

- Calculation details
 - Quantum Espresso is used for both DFT and DFPT calculations.
 - PBE potential is used in the calculations with Van der Waals correction.
- Parameters for calculations
 - k-grid: 12x12x8
 - q-grid: 3x3x2
 - smearing: 0.04 Ry

Density of States

[1] R. Yoshida, J. Phys. Soc. Jpn., Vol. 78, No. 3 (2009)

Phonon Dispersion

[1] K. Zakeri, PRB 96, 094531 (2017)

Phonon Density of States

 Calculated phonon DOS of three structures compared with three major modes measured in experiments ^[1].

[1] K. Zakeri, PRB 96, 094531 (2017)

Eliashberg function $\alpha^2 F(\omega)$

 Calculated Eliashberg functions and phonon density of states of three structures

•
$$\lambda = 2 \int_0^\infty \frac{1}{\omega} [\alpha^2 F(\omega)] d\omega$$

Calculation Results

	Structure	λ	$D(\epsilon_f)$ (states/eV/cell)	$\omega_{ m log}$ (K)	<i>Т</i> _с (К)
(1)	А	0.27	3.08	197.9	0.032
(2)	В	0.23	2.48	212.9	0.011
(3)	С	0.22	1.98	203.4	0.001
Thm ^[1]	C (no vdw)	0.17		162.6	≪1
Exp ^[2]					8.5

 $\mu^* = 0.10$ for all calculations

$$T_{c} = \frac{\omega_{log}}{1.2} \exp[\frac{-1.04(1+\lambda)}{\lambda - \mu^{*}(1+0.62\lambda)}]$$

[1] A. Subedi, PRB 78, 134514 (2008)[2] T. M. McQueen, PRB 79, 014522 (2009)

Is BCS still applicable to FeSe?

- Ba_{1-x}K_xBiO₃ (BKBO)
 - Measured T_c at about 30 K when x equal to 0.4^[1].
 - Calculated T_c with DFPT method (< 6.1 K), much lower than experiments.^[2]
- GW perturbation theory (from GW method)
 - Z. Li^[2] calculated the T_c of Ba_{0.6}K_{0.4}BiO₃ within a range from 28.5 to 44.8 K
 - μ^* from 0.18 to 0.08
 - This was consistent with experiments.
- GWPT may possibly explain the superconductivity of FeSe.

[1] C. H. P. Wen, PRL 121, 117002 (2018)[2] Z. Li, PRL 122, 186402 (2019)

Conclusion

- For structure C (atoms-only relaxed), its phonon dispersion matches the experiments better than other structures; however, its phonon DOS is not consistent with experiments, and it has the lowest electron-phonon coupling strength λ.
- The structure that follows experimental lattice constants (structure A) has the highest λ and $D(\epsilon_f)$, leading to highest T_c among all structures. Nevertheless, its T_c is still much lower than experiments (8.5 K) due to the small value of λ .
- As GW method solved the superconducting problem of Ba_xK_{1-x}BiO₃^[1], it may solve the problem of FeSe.

Acknowledgement

• Prof. Guang-Yu Guo, Department of Physics, NTU

Thank You for Your Attention!