Constructing quantum codes from any classical code and their embedding in ground space of local Hamiltonians

Ramis Movassagh,
IBM Quantum Research,Yingkai Ouyang
University of Sheffield

Main results

Part I

New Framework: *Any* classical code to a quantum code.

Part II

Linear distance quantum code in ground space of a new 2-local Hamiltonian.

Quantum coding formalisms

Quantum code's structure

Quantum error correction criterion

$$\Pi P \Pi = c_P \Pi$$
$$\Pi = |0_L\rangle \langle 0_L| + |1_L\rangle \langle 1_L|$$
$$\begin{pmatrix} 0_L|P|0_L\rangle &= \langle 1_L|P|1_L\rangle \\ \langle 0_L|P|1_L\rangle &= 0 \\ \end{pmatrix}$$
$$\underset{C_0 \cap C_1 = \emptyset}{\text{Mindist}(C) = d}$$

• Orthogonality conditions

Non-deformation conditions

$$\begin{array}{l} \left\langle 0_L |P| 0_L \right\rangle &= \left\langle 1_L |P| 1_L \right\rangle \\ \hline \\ \text{mindist}(C) = d \\ \downarrow \\ \left\langle 0_L |P| 0_L \right\rangle = \left\langle 1_L |P| 1_L \right\rangle = 0 \\ 1 \leq \operatorname{wt}_X(P) \leq d - 1 \end{array}$$
Consider diagonal Paulis P

Sandwich evaluation

Quantum coding implication

$$|C|$$
 columns
 $2V_q(d-1) - 1$ rows

Theorem 1a: Using any non-zero solution of Ax = 0, we can derive a quantum code.

$$|C| \ge 2V_q(d-1)$$

Embedding more logical states

A-matrix:
$$\operatorname{Re}(\langle \mathbf{c} | P | \mathbf{c} \rangle)$$
 $\operatorname{Im}(\langle \mathbf{c} | P | \mathbf{c} \rangle)$

$$|j_L\rangle = \sum_{\mathbf{c}\in C_j} \alpha_{\mathbf{c}}^{(j)} |\mathbf{c}\rangle,$$
$$[A_1A_2] \begin{bmatrix} x_1^+ \\ -x_1^- \end{bmatrix} = 0 \quad [A_2A_3] \begin{bmatrix} -x_1^- \\ x_2 \end{bmatrix} = 0, \quad x_2 \ge 0$$

Dines, Annals of Mathematics, 1926

Embedding more logical states

Theorem 1b: Using this procedure, we can derive quantum codes with linear distance and constant rate.

 $\mathbf{c} \in C_{i}$

$$\begin{bmatrix} A_1 A_2 \end{bmatrix} \begin{bmatrix} x_1^+ \\ -x_1^- \end{bmatrix} = 0 \quad \begin{bmatrix} A_2 A_3 \end{bmatrix} \begin{bmatrix} -x_1^- \\ x_2 \end{bmatrix} = 0 , \quad x_2 \ge 0$$

Dines, Annals of Mathematics, 1926

AQEC:Packing in a hypercube

Each point = a complex vector, components labelled by P Number of points = number of subcodes

Illustrations (finite n)

Classical	Quantum
Repetition code	Nothing as expected
[7,4,3] Hamming code	Steane's code uniquely!
Nonlinear (4,8,2) cyclic code	((4,4,2)) CWS code

Permutation-invariant states, where product is not basis

Ground states and quantum codes

Heisenberg models, (Kitaev's code, compass model / XY model .

 $H = J \sum_{\langle j,k \rangle} (X_j X_k + Z_j Z_k) \label{eq:Kitaev, Annals of Physics 2006} \text{ Dorier, Becca, Mila, PRB 2005} \\ \text{Li, Miller, Newman, Wu, Brown, PRX 2019} \end{cases}$

Engineer Hamiltonian to suppress noise.

QECC in translation-invariant spin-chains

Brandao, Crosson, Sahinoglu, Bowen, PRL 2019

Properties:	Brandao et al (PRL 2018)	This work
QECC	Approximate with $\varepsilon = O(N^{-1/8})$	Exact
Distance d	$d = \Omega(\log(N))$	$d = \Theta(N)$
Rate	Vanishes	Vanishes
Error restriction	Consecutive spins	None
Code space	Low-energy eigenstates	Exact ground state
Translation invariance required?	Yes	No
Examples: . 1D ferromagnetic Heisenberg . Motzkin spin chain (s=1)	Code space Ground space	Code space Ground space

2-local Hamiltonian

$$2s+1 \qquad \begin{array}{c} P \\ 2s+1 \\ Q \\ \end{array} \qquad \begin{array}{c} P \\ 2s+1 \\ Q \\ \end{array} \qquad \begin{array}{c} P \\ 2s+1 \\ Q \\ \end{array} \qquad \begin{array}{c} P \\ 2s+1 \\ Q \\ \end{array} \qquad \begin{array}{c} P \\ 2s+1 \\ Q \\ \end{array} \qquad \begin{array}{c} 2s+1 \\ Q \\ \end{array} \qquad \begin{array}{c} Q \\ 2s+1 \\ \end{array}$$

Spin transport, spin interaction		
$\triangleright P^m = 0 \leftrightarrow m\rangle$	$\langle 0 \leftrightarrow m $	
$\triangleright Q^m = 00 \leftrightarrow \pm m\rangle \langle 00 \leftrightarrow \pm m $		
$ 0 \leftrightarrow m\rangle \equiv \frac{1}{\sqrt{2}} \left[0, m\rangle - m, 0\rangle \right]$		
$ 00 \leftrightarrow \pm m\rangle \equiv \frac{1}{\sqrt{2}} \left[0,0\rangle - m,-m\rangle \right]$		
Local Projector	Local moves	
P^m	$0m \longleftrightarrow m0$	
Q^m	$00 \longleftrightarrow m, -m$	

Ground space

Count all n-strings with no 0's and no (m,-m) substrings.

All product states Feasible product states

Embedding more logical states

Theorem 1b: Using this procedure, we can derive quantum codes with linear distance and constant rate.

 $\mathbf{c} \in C_{i}$

$$\begin{bmatrix} A_1 A_2 \end{bmatrix} \begin{bmatrix} x_1^+ \\ -x_1^- \end{bmatrix} = 0 \quad \begin{bmatrix} A_2 A_3 \end{bmatrix} \begin{bmatrix} -x_1^- \\ x_2 \end{bmatrix} = 0 , \quad x_2 \ge 0$$

Dines, Annals of Mathematics, 1926

$$\begin{array}{l} \text{Example: An 8-qudit code} \\ |0_L\rangle &= (|\phi_0\rangle|\theta_0\rangle + |\phi_1\rangle|\theta_1\rangle + |\phi_2\rangle|\theta_2\rangle \\ &+ |\phi_3\rangle|\theta_3\rangle + |\phi_4\rangle|\theta_4\rangle + |\phi_5\rangle|\theta_5\rangle)/\sqrt{6} \\ |1_L\rangle &= (|\phi_1\rangle|\theta_4\rangle + |\phi_0\rangle|\theta_3\rangle + |\phi_3\rangle|\theta_0\rangle \\ &+ |\phi_2\rangle|\theta_5\rangle + |\phi_5\rangle|\theta_2\rangle + |\phi_4\rangle|\theta_1\rangle)/\sqrt{6} \\ |\phi_0\rangle &= |1, 1, 1, -2\rangle, \qquad |\theta_0\rangle = |-2, 2, 2, 1\rangle, \\ |\phi_1\rangle &= |1, -2, -1, -1\rangle, \qquad |\theta_1\rangle = |1, -2, -2, -2\rangle, \\ |\phi_2\rangle &= |-1, -2, -2, -1\rangle, \qquad |\theta_2\rangle = |-1, 2, 2, 1\rangle, \\ |\phi_3\rangle &= |-1, -1, 1, 1\rangle, \qquad |\theta_3\rangle = |-2, -2, -2, -2\rangle, \\ |\phi_4\rangle &= |2, -1, -1, 1\rangle, \qquad |\theta_4\rangle = |1, 2, 2, 1\rangle, \\ |\phi_5\rangle &= |2, 1, -2, -2\rangle, \qquad |\theta_5\rangle = |-1, -2, -2, -2\rangle. \qquad 19/21 \end{array}$$

Error-detecting code

$$\begin{aligned} |0_L\rangle &= \frac{|1, 1, 2, 1, -2, 1\rangle + |-2, 1, -2, -2, 2, 2\rangle}{\sqrt{2}} \\ |1_L\rangle &= \frac{|1, 1, -2, -2, 2, 1\rangle + |-2, 1, 2, 1, -2, 2\rangle}{\sqrt{2}}. \end{aligned}$$

$\begin{array}{l} \mbox{Logical X:} \\ 3^{rd} \mbox{ and } 5^{th} \mbox{ spin 2} \longleftrightarrow \ -2 \\ 4^{th} \mbox{ spin 1} \longleftrightarrow \ -2 \end{array}$

Quantum LDPC with linear distance, TQO in 1D?

Subspace LDPC?

Bravyi-Terhal no-go, d=O(L^{D-1}). In 1D, Stabilizer and subsystem codes have d=O(1). Bravyi, Terhal NJP(2009) We sidestep this no-go by relaxing stabilizer constraint.

Approximate quantum LDPC in 10-local Hamiltonian. Ours is 2-local and exact. ^{Bohdanowicz, Crosson, Nirkhe, Yuen, ACM SIGACT} Symposium on Theory of Computing (2019)

Topological order in 1D, but we do not use all of the
ground space.Bravyi, Hastings, Michalakis JMP (2010)