Quantum & Theoretical Computer Science: a brief background for Nai-Hui & Han-Hsuan's talk

Kai-Min Chung

Academia Sinica, Taiwan

Theoretical Computer Science

A mathematical field attempts to study everything through computational lens.

Mathematical field: We don't do experiments. We prove theorems.

Computation:

• How to solve problems / compute answers efficiently? (Algorithm)

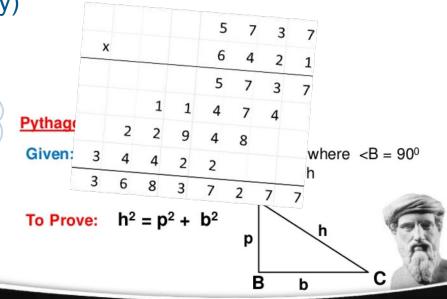
5737 * 6421 = ?

36837277

• How fast it can be? (Complexity theory)

For example:

- Multiplication
- Factoring
- Proving theorem



Computational Lens

Evolution: Abundant life on Earth today.

What efficiency algorithm can do it in merely 4.5 billion years?

"How do you search for a 3 $\times 10^9$ -long string in 3 $\times 10^9$ years?"

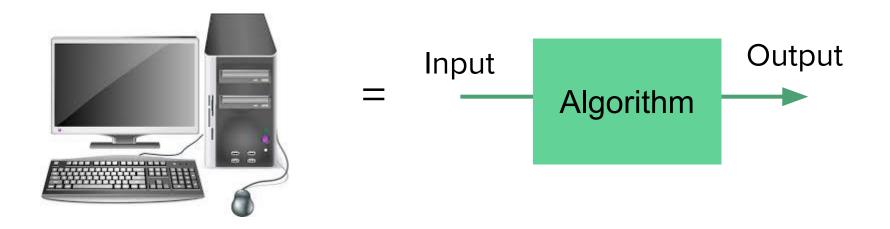
Les Valiant 2007

Economics (game theory): Market converges to certain equilibria. How to find it?

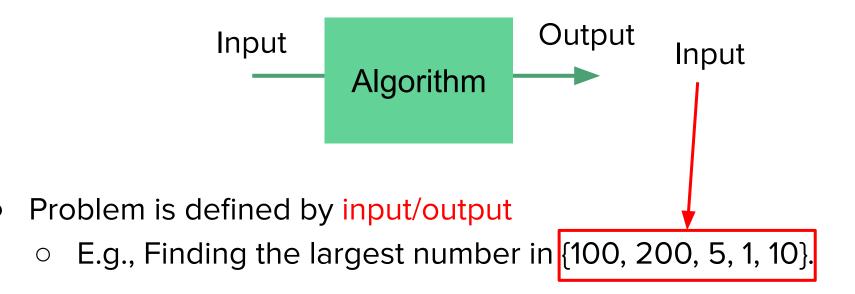
"If your laptop can't find it, then neither can the market." Kamal Jain

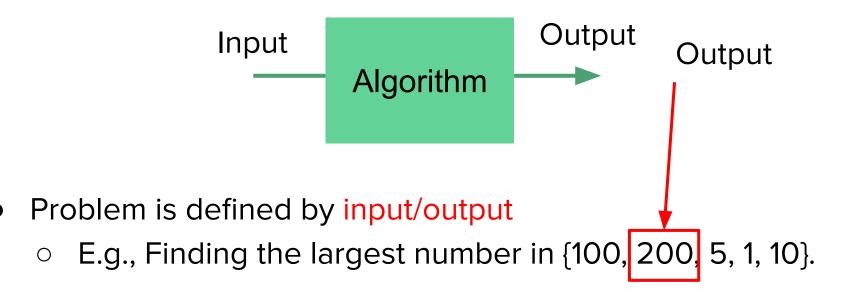
Talk: "The Algorithmic Lens: How the Computational Perspective is Transforming the Sciences" by Christos H Papadimitriou

Concepts of Algorithm and Complexity



- Problem is defined by input/output
 - E.g., Finding the largest number in {100, 200, 5, 1, 10}.





- Problem is defined by input/output
 - \circ E.g., Finding the largest number in {100, 200, 5, 1, 10}.
- Algorithm: given the input, find the output.
 - E.g., Read/compare numbers one by one.

- Problem is defined by input/output
 - E.g., Finding the largest number in {100, 200, 5, 1, 10}.
- Algorithm: given the input, find the output.
 - $\circ~$ E.g., Read/compare numbers one by one.
- Evaluate the running time of an Alg. in terms of input size.
 - E.g., Given **n** numbers, find the largest number.
 - Input size: n / Running time: O(n)

Running Time & Input Size

Evaluate the running time of an Alg. in terms of input size.

Want the running time to grow "slowly" with the input size.

- An algorithm is efficient if its running time is in poly(n).
 E.g., n², n¹⁰⁰, 10000n.
- An algorithm is inefficient if its running time is >poly(n).
 E.g., 2ⁿ and n^{logn}.

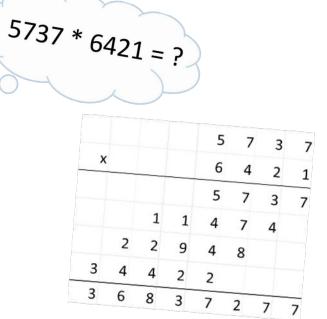
Examples

Multiplication

- Input: two n digits numbers p, q
- Output: number N = p * q
- Textbook multiplication: O(n²) time

Factoring

- Input: an n digit number N
- Output: factors p, q s.t. N = p * q
- Best classical algorithm: $O\left(2^{\sqrt[3]{n}}\right)$ time
- Shor's quantum algorithm: O(n³) time



3683727

Mathematical Methodology

- Design an algorithm A to solve the problem
- Correctness: Show A always outputs correct answers
- Efficiency: Show A always terminate in desired runtime

Multiplication

- Algorithm: textbook multiplication
- Correctness: output = p * q
- Efficiency: terminate in O(n²) time
- A needs to work **for all** input instances
- There are infinite instances!
- Can't rely on experiments --- rigorous proof needed!

				1. 10			
				5	7	3	7
X				6	4	2	1
				5	7	3	7
		1	1	4	7	4	
3	2	2	9	4	8		
	4	4	2	2			
3	6	8	3	7	2	7	7

Complexity Measure

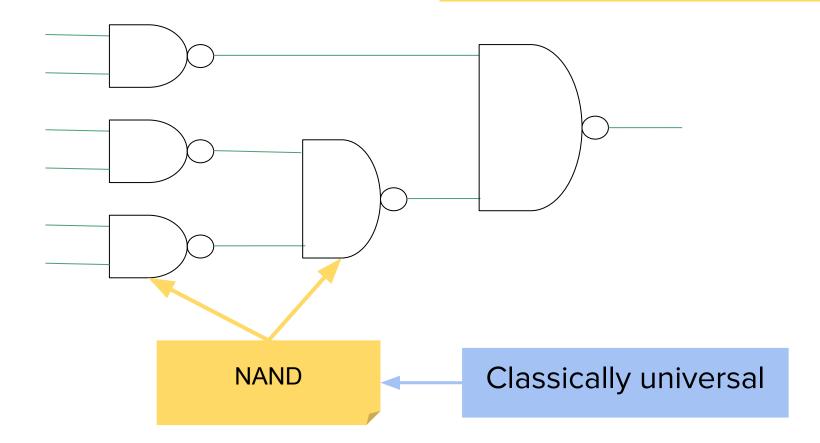
- Time complexity: # steps to finish the computation
- Space complexity: required memory for the computation
- Computation Model:
 - Conventional computer (RAM machine)
 - Turing machine
 - Quantum circuit (Clifford, T, Toffoli gates, etc)
 - Classical circuit (AND, OR, NOT gates, etc)
 - Classical-quantum hybrid model
- Depth complexity:
 - \circ # parallel steps to finish the computation

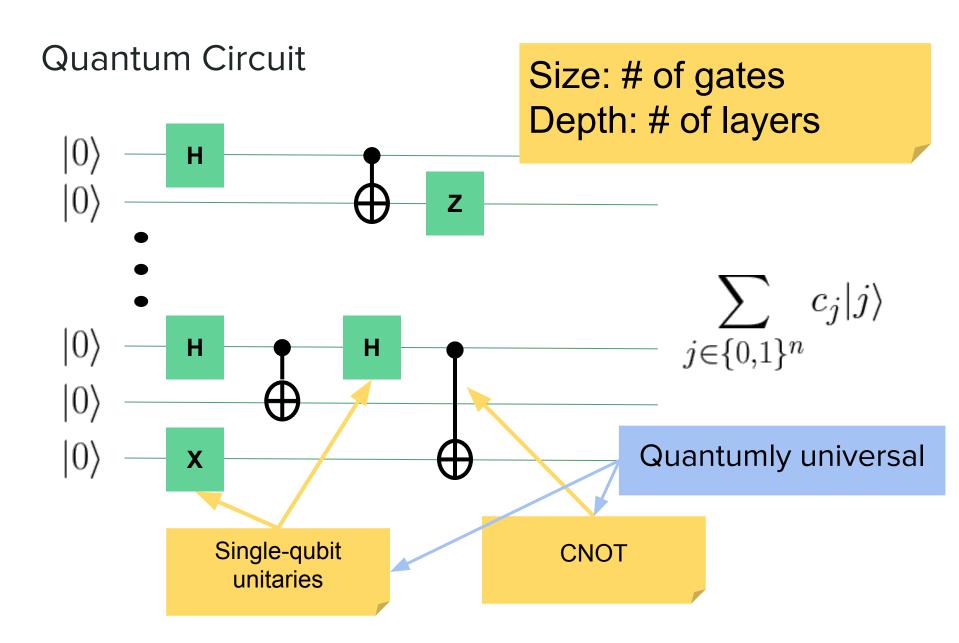
Nai-Hui's Talk: On the Need for Large Quantum Depth

- Motivation: near-term quantum computer has small depth
 What can near-term quantum computers do?
- Computation Models:
 - 1. Classical + small-depth quantum computation
 - 2. Polynomial time quantum computation (no depth limits)
- Do they have the same computational power?
 - $\circ~$ Can solve the same set of computation problems? or
 - \circ 3 a problem s.t. it can be solved by 2 but not 1?

Classical Circuit

Size: # of gates Depth: # of layers





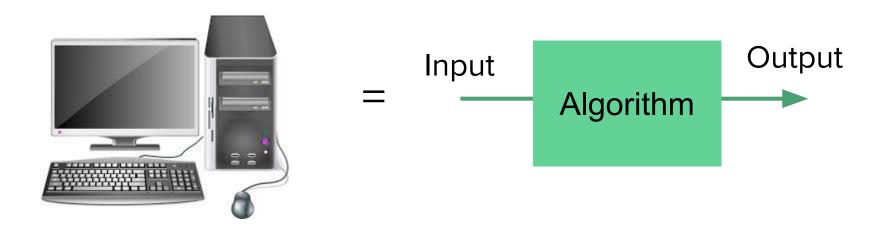
Han-Hsuan's: Sampling-based sublinear low-rank matrix arithmetic framework for dequantizing quantum machine learning

- Quantum-inspired / dequantized classical algorithms
 - Unexpected classical algorithms match quantum ones
- Sublinear time algorithms for several problems
 E.g., Semi-definite programming (SDP), matrix inversion
- *Sublinear time:* do not have time to read all input!
 - Quantum: QRAM access to the input
 - Classical: sampling access to the input

Provable vs. Heuristic Algorithms

- Not all algorithms can be analyzed provably
- Heuristic algorithms: lack of provable guarantees, but can be very powerful and play important role!
 - Machine learning, SAT solver, genetic algorithms, simulation annealing
- Quantum heuristic algorithms
 - Quantum annealing, VQE, QAOA, adiabatic alg., etc
 - May lead to first near-term application for QC
- Research methodology
 - Rely on solid experimental evidence, and sometimes, good theoretical explanations (e.g., for SAT solvers)
 - Caution: current QC is still too small for exp. evidence...

Complexity Theory 101 – Formal Definitions



Computational Problems

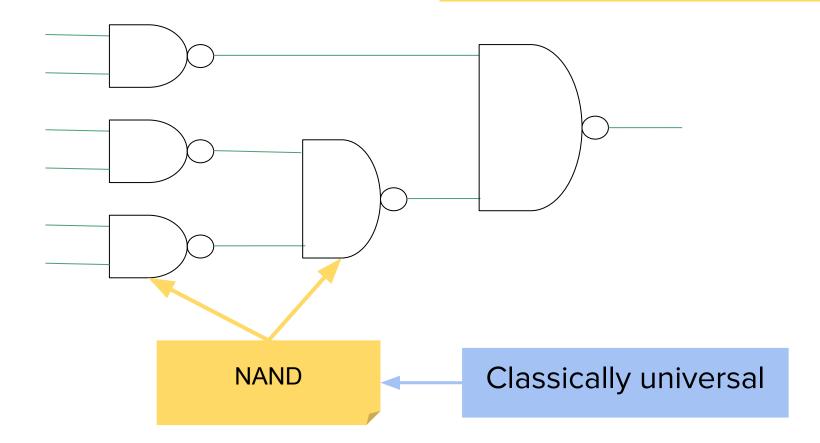
Just a function from bit strings to bit strings $f: \{0,1\}^* \rightarrow \{0,1\}^*$

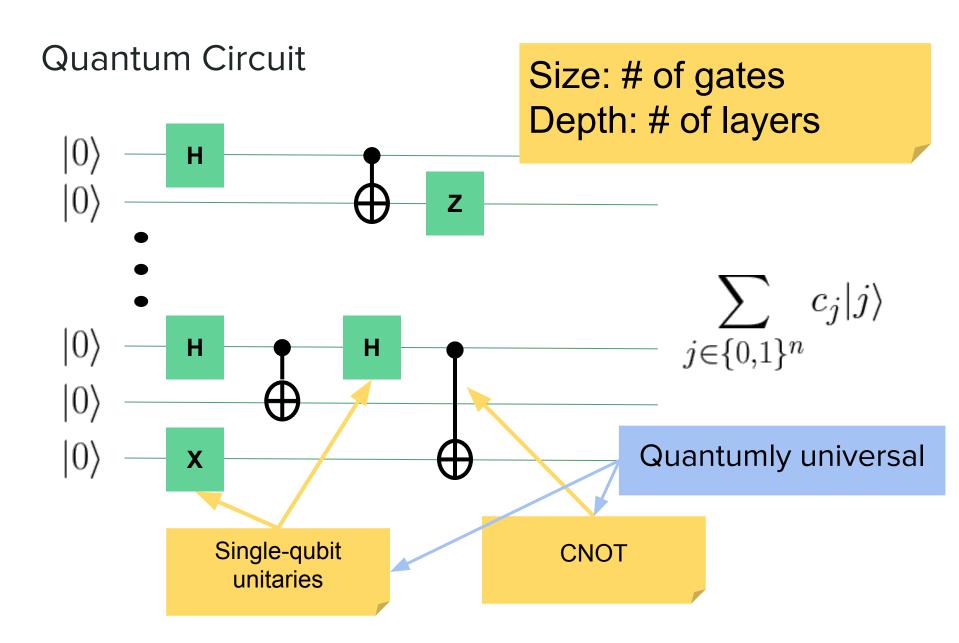
- For each input size n: $f_n: \{0,1\}^n \rightarrow \{0,1\}^{m(n)}$
- Goal: understand the difficult of computing f
 - Input: $x \in \{0,1\}^n$
 - Output: $f_n(x) \in \{0,1\}^{m(n)}$
 - Complexity: e.g., time T(n), space S(n), depth D(n)
 - E.g., Multiplication, x = two numbers, f(x) = their multiplication

Decision problem (Language): L: $\{0,1\}^* \rightarrow \{0,1\}$

Classical Circuit

Size: # of gates Depth: # of layers





Circuit Complexity

Given a computation problem f: $\{0,1\}^* \rightarrow \{0,1\}^*$

We say a sequence of circuits {C_n} computes f if

• For all n, for all $x \in \{0,1\}^n$, $C_n(x) = f_n(x)$

The circuit size complexity of f is s(n) if

• $\exists \{C_n\} \text{ computes f s.t. } SIZE(C_n) \leq s(n) \text{ for all } n$

Complexity Class: classify comp. prob. by its complexity

E.g., P/poly = { f: f has circuit complexity s(n) ≤ poly(n)}

Challenge: prove circuit complexity lower bound

E.g., show some f has circuit size complexity s(n) > n²

Millennium Prize Problems: P vs NP

Other Computation Model & Complexity Measure

Computation Models

- Turing Machine, Classical-Quantum Hybrid Complexity Measure
- Time/Size, Space (memory), Depth

