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Intro

There were quantum machine learning (QML) algorithm. (Quantum
algorithms that solve classical machine learning problems.)

In this work, we dequantized a large number of known QML
algorithms. (Giving classical algorithms whose runtime is polynomial
compared to the runtime of QML algorithms, showing that the QML
algorithms cannot have exponential speedup.)
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History Quantum Machine Learning
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Quantum States

Recall that in quantum mechanics, data are stored as quantum states.

Two properties of a quantum state.

1 A (pure) quantum state is a complex unit vector.

Ex:
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2 When we measure a quantum state, we get a random component

with probability proportional to its amplitude squared.

Ex:
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 measure−−−−−→ ê0 with probability 1
4 , ê1 with probability 3

4
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Harrow-Hassidim-Lloyd (HHL) algorithm [HHL09]

Problem: Solve Ax = b
A is a sparse matrix. b is a unit vector. A and b are given, solve for x .

HHL quantum algorithm: Given b as a quantum state, get x/|x | as a
quantum state , in time polylog of the size of b.

For a classical algorithm, even reading b would take linear time.
”Exponential speedup”.

Using HHL, one can therefore calculate 〈x |M |x〉 efficiently for some
operator M.

HHL uses phase estimation to manipulate eigenvalues and
eigenvectors of A.
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Data Issue of HHL

b as a quantum state: the algorithm has access to a copy of quantum
state |b〉 such that 〈i |b〉 = bi .

Issue: how do we get |b〉
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QML following HHL

We didn’t really have an answer to the data issue, but that didn’t
stop people from publishing QML papers.

Various QML algorithm for different problems are proposed with
similar ideas of HHL. These QML algorithm need to take some input
data as a quantum state, therefore having the same data issue as
HHL.

Examples: semi-definite programming (SDP), Hamiltonian simulation,
supervised clustering, principal component analysis, support vector
machine, and discriminant analysis, recommendation system.
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[KP17] algorithm for recommendation system

Finally, in [KP17], the authors solved the data issue by showing how to
compute the quantum state needed from classical inputs with
pre-computation. (The pre-computation takes linear time, but such
pre-computation makes sense in the context of recommendation system.)
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”Dequantization”: Classical Sampling Techniques
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Ewin Tang’s dequantization

Ewin Tang [Tan18a] dequantized [KP17]’s quantum algorithm for
recommendation system.

Key observation: if we have a quantum state, we can measure it and
sample from it, with basically no quantum computation.
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Reminder: Quantum States

Two facts about quantum state.

1 A (pure) quantum state is a complex unit vector.

Ex:
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2 When we measure a quantum state, we get a random component

with probability proportional to it’s amplitude squared.

Ex:
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 measure−−−−−→ ê0 with probability 1
4 , ê1 with probability 3
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FKV sampling

There exists work in classical literature about how to construct fast
algorithms given the ability to do sampling.

In particular, sampling techniques from [FKV04] gives a succinct
approximation of a low rank matrix.

We build on this technique to get approximation to singular value
decomposition and singular value transformation of a low rank matrix.
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Sampling access of a matrix

Given a matrix A, we assume we have two sampling access

sample a row index according to two-norms of each row.

input a row index, sample a column index according to norm squared
of elements of chosen row.

We can efficiently sample from any vector if we pre-compute a binary tree.

Note: Similar construction is used in [KP17] (QRAM)
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FKV approximation

How to find an “approximation” of a rank r , n × n matrix A. (r � n)

Intuition: Because A is low rank, just a few rows of A will span the
whole row space of A.

Sample p = O(poly(r)) rows from A. Do some normalization to get
p × n matrix S . S†S ≈ A†A.

Similarly, sample p columns from S to get p × p matrix W .
WW † ≈ SS†.

W is small (p × p) so we can just write it down and do singular value
decomposition (SVD).

A, S , and W all have the same singular values and related singular
vectors. Use SVD of W to “normalize” S† to get projector V .

A ≈ AVV †

15 / 42



FKV approximation
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FKV approximation
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Succinct description of V?

Each column of V is a linear combination of the sampled rows of A.
Record V efficiently by writing down the linear coefficients and which
rows are sampled.

We can calculate lots of things about V efficiently from the succinct
description.
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Sampling Toolbox

1 Can sample from linear combination of rows of A by rejection
sampling.

2 By (1), can sample from columns of V .

3 If we can sample from two vectors x and y , we can calculate x†y .
(By estimating a random variable that distributed with probability
|xi |2 and have values yi/xi )

4 If we can sample from matrix B, vectors x , y , we can calculate x†By .
[CLW18]

5 If we can sample from matrix B and query entries of matrix C , we
can calculate Tr[BC ].[GLT18]
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The Framework: Singular Value Transformation
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Our breakthrough: getting singular value decomposition

Recall: The FKV gives us V such that A ≈ AVV †.

Objective: get singular value decomposition of A.

Solution:

If we can get V such that A ≈ AVV † by sampling rows, then we can
get U such that A ≈ UU†A by sampling columns. (Double the
overhead in pre-computation to get sampling access to columns.)

A ≈ UU†AVV †.

Note that UU†AVV † = U(U†AV )V †

U†AV is small, so we can calculate every entry of it and write it
down. (we can calculate x†By)

singular value decomposition: U†AV = U ′DV ′†. Write down U ′, D,
V ′.

Get A ≈ (UU ′)D(VV ′)†, approximate singular decomposition of A.

We have explicit description of D and succinct description of (UU ′)
and (VV ′).
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Singular Value Transformation

Singular value transformation: apply a function on singular values. I.e. If
A = UDV † and f is a real valued function, f (SV )(A) = Uf (D)V †.

Recall that we already get A ≈ (UU ′)D(VV ′)†, so we can get
approximation to f (SV )(A) by calculating f (D).

By [GSLW19], many quantum machine learning algorithm can be
described in terms of singular value transformation.
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Applications
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Matrix inversion

Problem: given low rank matrix A and vector b, calculate x = A−1b.

Solution: apply singular value transformation to A with f (x) = 1/x . (With
some modifications to cut off the singularity.)

Note: incomparable to the HHL algorithm, since HHL works on sparse
matrices, while our classical algorithm need low rank matrices. But recall
that HHL algorithm has data issue.
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Solving low-rank Semi-Definite Programming (SDP)

This problem is parameterized by set of low rank matrices {Ai}. By the
Matrix Multiplicative Weight method, we can solve SDP if we can
calculate

Tr[Ai exp[−ε(Aj1 + Aj2 + . . . )]]

Solution: apply singular value transformation with f (x) = e−εx to
(Aj1 + Aj2 + . . . ). (Actually this is a transformation on eigenvalues,
eigenvalue transformation can be done similarly for Hermitian matrices.)
(Need to combine sampling access to different Aj too.)
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Hamiltonian simulation

Problem: given matrix H, unit vector ψ and positive number t, calculate
exp(−iHt)ψ.

Solution: apply singular value transformation to H with f (x) = e−ixt .
(Actually this is a transformation on eigenvalues.)

26 / 42



Conclusion

We give a classical framework to apply functions on low rank matrices
that runs in time polylog in dimension of the matrices.

The framework applies singular value transformation to matrices.

The framework gives classical algorithms of matching run time to
quantum machine learning algorithms. Including problems like
recommendation system, low rank matrix inversion, low rank SDP,
Hamiltonian simulation, supervised clustering, principal component
analysis , support vector machine, and discriminant analysis.
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Hope for QML

QML algorithms can still have polynomial speedup.

QML algorithms can have exponential speed up if they can get
quantum input naturally. (E.g. electromagnetic scattering.)
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Thanks!
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Recommendation System

Problem: Given a matrix A with small Frobenius norm, calculate the low
rank approximation of A, Ak .

Solution: apply singular value transformation to A with a threshold
function cutting off smaller eigenvalues. (The framework actually work as
long as the Frobenius norm of A is small.)
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