
Sampling-based sublinear low-rank matrix arithmetic
framework for dequantizing quantum machine learning

Han-Hsuan Lin

NTHU

February 18, 2021
Joint work with Nai-Hui Chia, Andras Gilyen, Tongyang Li, Ewin Tang,

and Chunhao Wang

1 / 42

Intro

There were quantum machine learning (QML) algorithm. (Quantum
algorithms that solve classical machine learning problems.)

In this work, we dequantized a large number of known QML
algorithms. (Giving classical algorithms whose runtime is polynomial
compared to the runtime of QML algorithms, showing that the QML
algorithms cannot have exponential speedup.)

2 / 42

Overview

1 History Quantum Machine Learning

2 ”Dequantization”: Classical Sampling Techniques

3 The Framework: Singular Value Transformation

4 Applications

3 / 42

History Quantum Machine Learning

4 / 42

Quantum States

Recall that in quantum mechanics, data are stored as quantum states.

Two properties of a quantum state.

1 A (pure) quantum state is a complex unit vector.

Ex:

 1
2
√
3
2 i

2 When we measure a quantum state, we get a random component

with probability proportional to its amplitude squared.

Ex:

 1
2
√
3
2 i

 measure−−−−−→ ê0 with probability 1
4 , ê1 with probability 3

4

5 / 42

Harrow-Hassidim-Lloyd (HHL) algorithm [HHL09]

Problem: Solve Ax = b
A is a sparse matrix. b is a unit vector. A and b are given, solve for x .

HHL quantum algorithm: Given b as a quantum state, get x/|x | as a
quantum state , in time polylog of the size of b.

For a classical algorithm, even reading b would take linear time.
”Exponential speedup”.

Using HHL, one can therefore calculate 〈x |M |x〉 efficiently for some
operator M.

HHL uses phase estimation to manipulate eigenvalues and
eigenvectors of A.

6 / 42

Data Issue of HHL

b as a quantum state: the algorithm has access to a copy of quantum
state |b〉 such that 〈i |b〉 = bi .

Issue: how do we get |b〉

7 / 42

QML following HHL

We didn’t really have an answer to the data issue, but that didn’t
stop people from publishing QML papers.

Various QML algorithm for different problems are proposed with
similar ideas of HHL. These QML algorithm need to take some input
data as a quantum state, therefore having the same data issue as
HHL.

Examples: semi-definite programming (SDP), Hamiltonian simulation,
supervised clustering, principal component analysis, support vector
machine, and discriminant analysis, recommendation system.

8 / 42

[KP17] algorithm for recommendation system

Finally, in [KP17], the authors solved the data issue by showing how to
compute the quantum state needed from classical inputs with
pre-computation. (The pre-computation takes linear time, but such
pre-computation makes sense in the context of recommendation system.)

9 / 42

”Dequantization”: Classical Sampling Techniques

10 / 42

Ewin Tang’s dequantization

Ewin Tang [Tan18a] dequantized [KP17]’s quantum algorithm for
recommendation system.

Key observation: if we have a quantum state, we can measure it and
sample from it, with basically no quantum computation.

11 / 42

Reminder: Quantum States

Two facts about quantum state.

1 A (pure) quantum state is a complex unit vector.

Ex:

 1
2
√
3
2 i

2 When we measure a quantum state, we get a random component

with probability proportional to it’s amplitude squared.

Ex:

 1
2
√
3
2 i

 measure−−−−−→ ê0 with probability 1
4 , ê1 with probability 3

4

12 / 42

FKV sampling

There exists work in classical literature about how to construct fast
algorithms given the ability to do sampling.

In particular, sampling techniques from [FKV04] gives a succinct
approximation of a low rank matrix.

We build on this technique to get approximation to singular value
decomposition and singular value transformation of a low rank matrix.

13 / 42

Sampling access of a matrix

Given a matrix A, we assume we have two sampling access

sample a row index according to two-norms of each row.

input a row index, sample a column index according to norm squared
of elements of chosen row.

We can efficiently sample from any vector if we pre-compute a binary tree.

Note: Similar construction is used in [KP17] (QRAM)

14 / 42

FKV approximation

How to find an “approximation” of a rank r , n × n matrix A. (r � n)

Intuition: Because A is low rank, just a few rows of A will span the
whole row space of A.

Sample p = O(poly(r)) rows from A. Do some normalization to get
p × n matrix S . S†S ≈ A†A.

Similarly, sample p columns from S to get p × p matrix W .
WW † ≈ SS†.

W is small (p × p) so we can just write it down and do singular value
decomposition (SVD).

A, S , and W all have the same singular values and related singular
vectors. Use SVD of W to “normalize” S† to get projector V .

A ≈ AVV †

15 / 42

FKV approximation

16 / 42

FKV approximation

17 / 42

Succinct description of V?

Each column of V is a linear combination of the sampled rows of A.
Record V efficiently by writing down the linear coefficients and which
rows are sampled.

We can calculate lots of things about V efficiently from the succinct
description.

18 / 42

Sampling Toolbox

1 Can sample from linear combination of rows of A by rejection
sampling.

2 By (1), can sample from columns of V .

3 If we can sample from two vectors x and y , we can calculate x†y .
(By estimating a random variable that distributed with probability
|xi |2 and have values yi/xi)

4 If we can sample from matrix B, vectors x , y , we can calculate x†By .
[CLW18]

5 If we can sample from matrix B and query entries of matrix C , we
can calculate Tr[BC].[GLT18]

19 / 42

The Framework: Singular Value Transformation

20 / 42

Our breakthrough: getting singular value decomposition

Recall: The FKV gives us V such that A ≈ AVV †.

Objective: get singular value decomposition of A.

Solution:

If we can get V such that A ≈ AVV † by sampling rows, then we can
get U such that A ≈ UU†A by sampling columns. (Double the
overhead in pre-computation to get sampling access to columns.)

A ≈ UU†AVV †.

Note that UU†AVV † = U(U†AV)V †

U†AV is small, so we can calculate every entry of it and write it
down. (we can calculate x†By)

singular value decomposition: U†AV = U ′DV ′†. Write down U ′, D,
V ′.

Get A ≈ (UU ′)D(VV ′)†, approximate singular decomposition of A.

We have explicit description of D and succinct description of (UU ′)
and (VV ′).

21 / 42

Singular Value Transformation

Singular value transformation: apply a function on singular values. I.e. If
A = UDV † and f is a real valued function, f (SV)(A) = Uf (D)V †.

Recall that we already get A ≈ (UU ′)D(VV ′)†, so we can get
approximation to f (SV)(A) by calculating f (D).

By [GSLW19], many quantum machine learning algorithm can be
described in terms of singular value transformation.

22 / 42

Applications

23 / 42

Matrix inversion

Problem: given low rank matrix A and vector b, calculate x = A−1b.

Solution: apply singular value transformation to A with f (x) = 1/x . (With
some modifications to cut off the singularity.)

Note: incomparable to the HHL algorithm, since HHL works on sparse
matrices, while our classical algorithm need low rank matrices. But recall
that HHL algorithm has data issue.

24 / 42

Solving low-rank Semi-Definite Programming (SDP)

This problem is parameterized by set of low rank matrices {Ai}. By the
Matrix Multiplicative Weight method, we can solve SDP if we can
calculate

Tr[Ai exp[−ε(Aj1 + Aj2 + . . .)]]

Solution: apply singular value transformation with f (x) = e−εx to
(Aj1 + Aj2 + . . .). (Actually this is a transformation on eigenvalues,
eigenvalue transformation can be done similarly for Hermitian matrices.)
(Need to combine sampling access to different Aj too.)

25 / 42

Hamiltonian simulation

Problem: given matrix H, unit vector ψ and positive number t, calculate
exp(−iHt)ψ.

Solution: apply singular value transformation to H with f (x) = e−ixt .
(Actually this is a transformation on eigenvalues.)

26 / 42

Conclusion

We give a classical framework to apply functions on low rank matrices
that runs in time polylog in dimension of the matrices.

The framework applies singular value transformation to matrices.

The framework gives classical algorithms of matching run time to
quantum machine learning algorithms. Including problems like
recommendation system, low rank matrix inversion, low rank SDP,
Hamiltonian simulation, supervised clustering, principal component
analysis , support vector machine, and discriminant analysis.

27 / 42

Hope for QML

QML algorithms can still have polynomial speedup.

QML algorithms can have exponential speed up if they can get
quantum input naturally. (E.g. electromagnetic scattering.)

28 / 42

Thanks!

29 / 42

30 / 42

Recommendation System

Problem: Given a matrix A with small Frobenius norm, calculate the low
rank approximation of A, Ak .

Solution: apply singular value transformation to A with a threshold
function cutting off smaller eigenvalues. (The framework actually work as
long as the Frobenius norm of A is small.)

31 / 42

Scott Aaronson. Shadow tomography of quantum states. In
Proceedings of the 50th Annual ACM Symposium on Theory of
Computing, pages 325–338. ACM, 2018, arXiv:1711.01053.

Ittai Abraham, Shiri Chechik, and Sebastian Krinninger. Fully dynamic
all-pairs shortest paths with worst-case update-time revisited. In
Proceedings of the 28th Annual ACM-SIAM Symposium on Discrete
Algorithms, pages 440–452. SIAM, 2017, arXiv:1607.05132.

Joran van Apeldoorn and András Gilyén. Improvements in quantum
SDP-solving with applications. 2018, arXiv:1804.05058.

Joran van Apeldoorn, András Gilyén, Sander Gribling, and Ronald de
Wolf. Quantum SDP-solvers: Better upper and lower bounds. In
Proceedings of the 58th Annual IEEE Symposium on Foundations of
Computer Science. IEEE, 2017, arXiv:1705.01843.

Sanjeev Arora, Elad Hazan, and Satyen Kale. The multiplicative
weights update method: a meta-algorithm and applications. Theory of
Computing, 8(1):121–164, 2012.

32 / 42

http://arxiv.org/abs/arXiv:1711.01053
http://arxiv.org/abs/arXiv:1607.05132
http://arxiv.org/abs/arXiv:1804.05058
http://arxiv.org/abs/arXiv:1705.01843

Alexandr Andoni, Piotr Indyk, and Ilya Razenshteyn. Approximate
nearest neighbor search in high dimensions. 2018, arXiv:1806.09823.

Sanjeev Arora and Satyen Kale. A combinatorial, primal-dual approach
to semidefinite programs. In Proceedings of the 39th Annual ACM
Symposium on Theory of Computing, pages 227–236. ACM, 2007.

Kurt M. Anstreicher. The volumetric barrier for semidefinite
programming. Mathematics of Operations Research, 25(3):365–380,
2000.

Sepehr Assadi, Krzysztof Onak, Baruch Schieber, and Shay Solomon.
Fully dynamic maximal independent set with sublinear update time. In
Proceedings of the 50th Annual ACM SIGACT Symposium on Theory
of Computing, pages 815–826. ACM, 2018, arXiv:1802.09709.

Zeyuan Allen-Zhu, Yin Tat Lee, and Lorenzo Orecchia. Using
optimization to obtain a width-independent, parallel, simpler, and
faster positive sdp solver. In Proceedings of the 27th Annual
ACM-SIAM Symposium on Discrete Algorithms, pages 1824–1831.

33 / 42

http://arxiv.org/abs/arXiv:1806.09823
http://arxiv.org/abs/arXiv:1802.09709

Society for Industrial and Applied Mathematics, 2016,
arXiv:1507.02259.

Sayan Bhattacharya, Deeparnab Chakrabarty, Monika Henzinger, and
Danupon Nanongkai. Dynamic algorithms for graph coloring. In
Proceedings of the 29th Annual ACM-SIAM Symposium on Discrete
Algorithms, pages 1–20. Society for Industrial and Applied
Mathematics, 2018, arXiv:1711.04355.

Sayan Bhattacharya, Monika Henzinger, and Danupon Nanongkai.
Fully dynamic approximate maximum matching and minimum vertex
cover in o(log3 n) worst case update time. In Proceedings of the 28th
Annual ACM-SIAM Symposium on Discrete Algorithms, pages
470–489. SIAM, 2017, arXiv:1704.02844.

Fernando G. S. L. Brandão, Amir Kalev, Tongyang Li, Cedric Yen-Yu
Lin, Krysta M. Svore, and Xiaodi Wu. Quantum SDP solvers: Large
speed-ups, optimality, and applications to quantum learning. 2017,
arXiv:1710.02581.

Fernando G. S. L. Brandão and Krysta Svore. Quantum speed-ups for
semidefinite programming. In Proceedings of the 58th Annual IEEE

34 / 42

http://arxiv.org/abs/arXiv:1507.02259
http://arxiv.org/abs/arXiv:1711.04355
http://arxiv.org/abs/arXiv:1704.02844
http://arxiv.org/abs/arXiv:1710.02581

Symposium on Foundations of Computer Science. IEEE, 2017,
arXiv:1609.05537.

Timothy M. Chan, Kasper Green Larsen, and Mihai Pătraşcu.
Orthogonal range searching on the RAM, revisited. In Proceedings of
the 27th Annual Symposium on Computational Geometry, pages
1–10. ACM, 2011, arXiv:1103.5510.

Michael B. Cohen, Yin Tat Lee, and Zhao Song. Solving linear
programs in the current matrix multiplication time. In Proceedings of
the 51st Annual ACM Symposium on Theory of Computing, ACM,
2019, arXiv:1810.07896.

Nai-Hui Chia, Han-Hsuan Lin, and Chunhao Wang. Quantum-inspired
sublinear classical algorithms for solving low-rank linear systems. 2018,
arXiv:1811.04852.

Xiao-Wen Chang, Christopher C. Paige, and G.W. Stewart. New
perturbation analyses for the Cholesky factorization. IMA Journal of
Numerical Analysis, 16(4):457–484, 1996.

35 / 42

http://arxiv.org/abs/arXiv:1609.05537
http://arxiv.org/abs/arXiv:1103.5510
http://arxiv.org/abs/arXiv:1810.07896
http://arxiv.org/abs/arXiv:1811.04852

Alan Frieze, Ravi Kannan, and Santosh Vempala. Fast Monte-Carlo
algorithms for finding low-rank approximations. Journal of the ACM,
51(6):1025–1041, 2004.

Shmuel Friedland and Wasin So. On the product of matrix
exponentials. Linear Algebra and its Applications, 196:193 – 205, 1994.

Dan Garber and Elad Hazan. Approximating Semidefinite Programs in
Sublinear Time. Advances in Neural Information Processing Systems
24, pages 1080–1088. Curran Associates, Inc., 2011.

Dan Garber and Elad Hazan. Almost Optimal Sublinear Time
Algorithm for Semidefinite Programming, 2012, arXiv:1208.5211.

András Gilyén. Personal communication, 2019.

Martin Grötschel, László Lovász, and Alexander Schrijver. The
ellipsoid method and its consequences in combinatorial optimization.
Combinatorica, 1(2):169–197, 1981.

36 / 42

http://arxiv.org/abs/arXiv:1208.5211

András Gilyén, Seth Lloyd, and Ewin Tang. Quantum-inspired
low-rank stochastic regression with logarithmic dependence on the
dimension, 2018, arXiv:1811.04909.

Gus Gutoski and Xiaodi Wu. Parallel approximation of min-max
problems with applications to classical and quantum zero-sum games.
In Proceedings of the 27th Annual IEEE Symposium on
Computational Complexity, pages 21–31. IEEE, 2012.

Elad Hazan. Efficient algorithms for online convex optimization and
their applications. PhD Thesis, Princeton University, 2006.

Monika R. Henzinger, Valerie King, and Valerie King. Randomized
fully dynamic graph algorithms with polylogarithmic time per
operation. Journal of the ACM (JACM), 46(4):502–516, 1999.

Jacob Holm, Kristian de Lichtenberg, and Mikkel Thorup.
Poly-logarithmic deterministic fully-dynamic algorithms for
connectivity, minimum spanning tree, 2-edge, and biconnectivity.
Journal of the ACM (JACM), 48(4):723–760, 2001.

37 / 42

http://arxiv.org/abs/arXiv:1811.04909

Rahul Jain and Penghui Yao. A parallel approximation algorithm for
positive semidefinite programming. In Proceedings of the 52nd Annual
IEEE Symposium on Foundations of Computer Science, pages
463–471. IEEE, 2011, arXiv:1104.2502.

Leonid G. Khachiyan. Polynomial algorithms in linear programming.
USSR Computational Mathematics and Mathematical Physics,
20(1):51–68, 1980.

Iordanis Kerenidis and Anupam Prakash. Quantum recommendation
systems. In Proceedings of the 8th Innovations in Theoretical
Computer Science Conference, pages 49:1–49:21, 2017,
arXiv:1603.08675.

Iordanis Kerenidis and Anupam Prakash. A quantum interior point
method for LPs and SDPs. 2018, arXiv:1808.09266.

Michael Luby and Noam Nisan. A parallel approximation algorithm for
positive linear programming. In Proceedings of the 25th Annual ACM
Symposium on Theory of Computing, pages 448–457. ACM, 1993.

38 / 42

http://arxiv.org/abs/arXiv:1104.2502
http://arxiv.org/abs/arXiv:1603.08675
http://arxiv.org/abs/arXiv:1808.09266

James R. Lee, Prasad Raghavendra, and David Steurer. Lower bounds
on the size of semidefinite programming relaxations. In Proceedings of
the 47th Annual ACM Symposium on Theory of Computing. ACM,
2015, arXiv:1411.6317.

Yin Tat Lee, Aaron Sidford, and Sam Chiu-wai Wong. A faster cutting
plane method and its implications for combinatorial and convex
optimization. In Proceedings of the 56th Annual IEEE Symposium on
Foundations of Computer Science, pages 1049–1065. IEEE, 2015,
arXiv:1508.04874.

Richard J. Lipton and Robert E. Tarjan. Applications of a planar
separator theorem. In Proceedings of the 18th Annual Symposium on
Foundations of Computer Science, pages 162–170. IEEE, 1977.

John E. Mitchell. Polynomial interior point cutting plane methods.
Optimization Methods and Software, 18(5):507–534, 2003.

Yurii Nesterov and Arkadi Nemirovsky. Conic formulation of a convex
programming problem and duality. Optimization Methods and
Software, 1(2):95–115, 1992.

39 / 42

http://arxiv.org/abs/arXiv:1411.6317
http://arxiv.org/abs/arXiv:1508.04874

Krzysztof Onak, Dana Ron, Michal Rosen, and Ronitt Rubinfeld. A
near-optimal sublinear-time algorithm for approximating the minimum
vertex cover size. In Proceedings of the 23rd Annual ACM-SIAM
Symposium on Discrete Algorithms, pages 1123–1131. Society for
Industrial and Applied Mathematics, 2012, arXiv:1110.1079.

David Poulin and Pawel Wocjan. Sampling from the thermal quantum
Gibbs state and evaluating partition functions with a quantum
computer. Physical Review Letters, 103(22):220502, 2009,
arXiv:0905.2199.

Shay Solomon. Fully dynamic maximal matching in constant update
time. In Proceedings of the 57th Annual Symposium on Foundations
of Computer Science, pages 325–334. IEEE, 2016, arXiv:1604.08491.

Ewin Tang. A quantum-inspired classical algorithm for
recommendation systems. In Proceedings of the 51st Annual ACM
Symposium on Theory of Computing, ACM, 2019, arXiv:1807.04271.

Ewin Tang. Quantum-inspired classical algorithms for principal
component analysis and supervised clustering. 2018, arXiv:1811.00414.

40 / 42

http://arxiv.org/abs/arXiv:1110.1079
http://arxiv.org/abs/arXiv:0905.2199
http://arxiv.org/abs/arXiv:1604.08491
http://arxiv.org/abs/arXiv:1807.04271
http://arxiv.org/abs/arXiv:1811.00414

Ewin Tang. Personal communication, 2019.

Mikkel Thorup. Worst-case update times for fully-dynamic all-pairs
shortest paths. In Proceedings of the 37th Annual ACM Symposium
on Theory of Ccomputing, pages 112–119. ACM, 2005.

Lieven Vandenberghe and Stephen Boyd. Semidefinite programming.
SIAM Review, 38(1):49–95, 1996.

Xiaodi Wu. Parallelized solution to semidefinite programmings in
quantum complexity theory, 2010, arXiv:1009.2211.

Drineas, P. and Kannan, R. and Mahoney, M.. Fast Monte Carlo
Algorithms for Matrices I: Approximating Matrix Multiplication. In
SIAM Journal on Computing, 36(1):132–157, 2006.

Harrow, Aram W., Avinatan Hassidim, and Seth Lloyd. Quantum
algorithm for linear systems of equations. Physical review letters
103.15 (2009): 150502.

Gilyén, A., Su, Y., Low, G. H., and Wiebe, N. Quantum singular value
transformation and beyond: exponential improvements for quantum

41 / 42

http://arxiv.org/abs/arXiv:1009.2211

matrix arithmetics. In Proceedings of the 51st Annual ACM SIGACT
Symposium on Theory of Computing (pp. 193-204).

42 / 42

	 History Quantum Machine Learning
	"Dequantization": Classical Sampling Techniques
	The Framework: Singular Value Transformation
	Applications

