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Supervised Learning

Image from Taigman, Yang, Ranzato, Wolf (2014)
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Supervised Learning
Models and Kernels

Learn (approximation) of f from a few labeled examples; N = sample
complexity

Model: Find best f̂ ∈ F a chosen space of functions

Generalisation error: minimise average error over (unseen) data;∫
X̃ dρ(x)

∣∣∣f̂ (x)− f (x)
∣∣∣ ≤ ε — learning to desired accuracy ε

Kernel: “Similarity function” k : X × X → R; way to use known data to
predict f on unknown data

Translation Invariance: k(x , y) = k̃(|x − y |)
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Random feature expansions

Idea: express the unknown function as an integral / linear combination over
“feature functions” determined using input data

Kernel can be written as an average over feature functions, with some
distribution over a ‘feature space’ V ⊂ RD′

1D Feature (function): ϕ : V × X → R, ϕ(vm, x) = e−2πivm·x

Ultimately, target function can be written as

f̂α(x) :=
M−1∑
m=0

αmϕ(vm, x),

with coefficients αi ∈ R to be determined by regression, minimising
generalisation error

Sathya.Subramanian@warwick.ac.uk Quantum ML (arXiv:2004.10756) 6 / 24



Random feature expansions
Optimised Random Features

Aim: Minimise the number M of random features required and so the length
of the linear combination f̂ by using feature functions optimised for the input
of labeled examples, and the choice of kernel

Conventional RF [Rahimi & Recht (2008)]:
Sample v0, . . . , vM−1 ∼ dτ ; get features ϕ(vi , ·); Regression gives αi ;

dτ data independent, # features M = Õ(1/ε2)

Optimised RF [Bach (2017)]:
Sample v0, . . . , vM−1 ∼ q∗ε (v)dτ(v); ..regression gives αi ;

q∗ε (v)dτ(v) data-optimised, # features M = Õ(log2 1/ε)

Provably optimal upto logarithmic factors

After discretisation and other technicalities,

Q∗ε (ṽ) ∝
〈
ϕ(ṽ , ·)

∣∣∣q̂ρ(Σ̂ + ε1)
−1
∣∣∣ϕ(ṽ , ·)

〉
(1)
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Optimised Random Features
Our Problem setup

Integral operator Σ:

(Σf ) (x ′) :=

∫
X
dρ(x) k (x ′, x) f (x). (2)

After discretisation and other technicalities, (with standard braket notation
for inner products etc.)

Q∗ε (ṽ) ∝
〈
ϕ(ṽ , ·)

∣∣∣q̂ρ(Σ̂ + ε1)
−1
∣∣∣ϕ(ṽ , ·)

〉
, (3)

where qρ(x) is the probability density function over the input space

Function / operator on X Vector / operator onHX

f : X → C |f 〉 ∝
∑

x̃ f (x̃) |x̃〉

ϕ(v, ·) : X → C |ϕ(v, ·)〉 ∝
∑

x̃ ϕ(v, x̃) |x̃〉

k̃ : X × X → R k :=
∑

x̃′,x̃ k̃(x̃′, x̃) |x̃′〉〈x̃|

qρ : X → R qρ :=
∑

x̃ qρ(x̃) |x̃〉〈x̃|

Σ acting on f : X → C Σ := kqρ

Σf : X → C Σ |f 〉
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Motivation
Why this method, and why Quantum?

Scope & domain of applicability Bach’s method extend beyond supervised
ML (eg. ridge regression, clustering can all be ‘kernelised’), to numerical
computation of high-dimensional integrals in signal processing, applied
mathematics, Bayesian inference, function approximation, optimisation

Sampling from the optimised distribution Q∗ε over features = classical
bottleneck; best known algorithm requires inversion of a full-rank, non-sparse,
O(eD) dimensional matrix, incurring worst case runtime O(eD)

Q∗ε involves inverting integral operator. Inversion =⇒ HHL09? But dense,
full-rank. We show how to overcome these difficulties.

Reference
1 Francis Bach (2017). On the equivalence between kernel quadrature rules & random feature expansions. Journal of Machine Learning Research,

18, 1–38.
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Related works

Kernels & QML: Quantum enhanced features [Havlicek et al. (Nature 2019)],
Experimental Kernel-based QML [Bartkiewicz et al. (Nature Scientific Reports
2020)], Vedaie et al. (2011.09694), Schuld (2101.11020), Park et al. (2004.03489),
Blank et al. (npj QI 2020) ...

Table 1 from Mengoni, R., Di Pierro, A. Kernel methods in Quantum Machine Learning.
Quantum Machince Intelligence 1, 65–71 (2019).
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Our contributions

Even with powerful tools like QRAM, attaining genuine quantum speedups
has been difficult

Our work circumvents (1) sparsity and (2) low rank assumptions by exploiting
a combination of the QFT and QSVT

Our asymptotic speedup is exponential over the best known classical
algorithm, in many useful parameter regimes

Technical analysis of Fourier sparse operators and construction of block
encodings could be more widely applicable
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Main result
Quantumly sampling optimised random features

Theorem

Given D-dimensional data, for any accuracy ε > 0 we can sample a (discrete)
optimised random feature ṽ ∈ Ṽ from a weighted distribution Q∗ε (ṽ)Pτ (ṽ) with∑

ṽ∈Ṽ

|(Q(ṽ)− Q∗ε (ṽ))Pτ (ṽ)| ≤ δ′,

in runtime

T = Õ (D logD)× Õ
(
Q∗max

ε
poly log

1

δ′

)
.

In particular, T is linear in D, while the best known classical algorithm for
estimating Q∗ε (ṽ)Pτ (ṽ) requires O(eD) time.
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ṽ∈Ṽ
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(
Q∗max

ε
poly log

1

δ′

)
.

In particular, T is linear in D, while the best known classical algorithm for
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Proof techniques

First obtain consistent and asymptotically exact discretisation scheme,
X 7→ X̃ , V 7→ Ṽ etc.

Design quantum state with Q∗ε (ṽ) as amplitudes

Use properties of translation invariant kernel to obtain decomposition of
integral operator into simple components: a full rank diagonal operator and
the QFT: technical tools are perfect reconstruction of the kernel via
translation invariance, regularisation

Implement using QRAM, QSVT, QFT
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Proof techniques

Want to sample from:

Q∗ε (ṽ) ∝
〈
ϕ(ṽ , ·)

∣∣∣q̂ρ(Σ̂ + ε1)
−1
∣∣∣ϕ(ṽ , ·)

〉
(4)

Quantum state2 that does the job:

|Ψ〉XX
′
∝
∑
ṽ∈X̃

Σ̂
− 1

2
ε |ṽ〉X ⊗

√
QτF†D

√
q̂ρ |ṽ〉X

′
(5)

Decomposition of Σ̂:

Σ̂ε ∝
√

q̂ρ · F†
DQτFD ·

√
q̂ρ + ε1, (6)

where FD is the quantum fourier transform (QFT) on CD .

2
‘Aggregated’ weights Qτ (ṽ) :=

∑
v∈ZD qτ (ṽ + v)
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Input model
QRAM for quantum access to Big Data

Classically: memory contents at address k retrievable in O(1) time

RAM : k 7→ f (k)

Quantumly: unitary version of RAM running in quantum superposition [e.g.
Jiang et al. (2019), Hann et al. (2019)]

QRAM :
∑
k

αk |k〉 |0〉 7→
∑
k

αk |k〉 |f (k)〉

Linear algebra algorithms using QRAM typically have complexity scaling with
the Frobenius norm of the input matrix
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Input model: q̂ρ

QRAM for quantum access to Big Data

probability measure dρ(x) = qρ(x)dx ; empirical pmf q̂ρ(x)

With O(N) classical preprocessing to count the N input data points,
construct logN depth binary tree for addressing data [e.g. Kerenidis &
Prakash (2017)]

We use q̂ρ(x) embedded into a diagonal operator q̂

|0〉 7→
∑
x

√
q̂ρ(x) |x〉

Frobenius norm of
√

q̂ is unity since q is a probability distribution
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Matrix functions and block-encodings

First introduced to study Hamiltonian simulation, has found a variety of
applications in the last few years.

A block encoding UA of a Hermitian A is a unitary that encodes a
(sub-)normalised version of A in its top left block

UA =

(
A/α ·
· ·

)
,

where α ≥ ‖A‖

1 A Gilyen et al. Quantum singular value transformation and beyond: exponential improvements for quantum matrix arithmetics, 2018
(arXiv:1806.01838).

2 S Subramanian et al. Implementing smooth functions of a Hermitian matrix on a quantum computer, 2018 (arXiv:1806.06885).

3 A Childs et al. Quantum Algorithm for Systems of Linear Equations with Exponentially Improved Dependence on Precision, 2015
(arXiv:1511.02306).
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Matrix functions and block encodings: Σ̂−1/2

Quantum Singular Value Transformations

Quantum Singular Value Transformations can use block encodings to
probabilistically implement non-unitary operators

UA =

(
A/α ·
· ·

)
7→
(
f̃ (A) ·
· ·

)
≈ Uf (A),

∥∥∥f̃ (A)− f (A)
∥∥∥ < δ.

Using the block encoding of UA roughly Õ
(
κ · poly log D

δ

)
times, where κ lower

bounds the condition number of A, one can obtain a block-encoding A−1/2 to
precision δ via the method of QSVT using polynomial approximations of the target
function x−1/2
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Avoiding sparsity and low-rank assumptions
Quantum Fourier Transform

The structure in this sampling problem and its deep relation to Fourier
analysis arising from the use of translation invariant kernels allows us to avoid
assuming sparse or low rank input, in contrast to seminal quantum algorithms
such as Harrow et al. (matrix inversion, 2009), Lloyd et al. (PCA, 2013), or
Kerenidis & Prakash (recommendation systems, 2016)

Classical FFT on dimension N requires O(N logN) time, whereas QFT

requires only Õ(log2 N) time

Essentially, translation-invariance indicates circulant matrix structure, can be
diagonalised by the FFT and then easily inverted in the Fourier basis. Source
of classical bottleneck could be the O(eD) dimensionality of Σ̂
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Avoiding sparsity and low-rank assumptions
Resistance to dequantisation by low-rank methods

Low rank + QRAM recently found to be dequantisable (Tang et al. (2018),
Le Gall et al. (2019), Chia et al. (2019, morning session)) via low-rank +
classical `2 sampling

Because we work with a full rank operator that might also be dense and have
large spectral norm, these existing dequantisation methods are not directly
applicable

Odds & Ends: after sampling the ṽi and deciding ϕ(ṽi , ·), we do doubly
stochastic gradient descent for regression to obtain the coefficients, classically in
linear O(D) time, without losing our speedup
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Summary

Novelty: (1) A niche where big data has small Frobenius norm, suitable for QRAM
(2) Non-sparse and full rank operator inverted by taking advantage of Fourier
sparsity + QFT + Quantum Singular Value Transformations

We also show that careful application of (doubly) stochastic gradient descent allows
regression to learn the coefficients αm in O(D) time, without canceling out the
quantum speedup

Hence widely applicable, promising candidate for ‘killer applications’ of Quantum
Computing / Quantum Machine Learning

Drawbacks: Practicality - not NISQ friendly, we focus on asymptotic complexity,
resulting circuits are huge and require thousands of qubits, long coherence times
and fault tolerance for QSVT
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Outlook
Interesting open directions

Specific applications of our framework: (binary) classification, SVMs,
regression

Other applications where an operator is sparse in a Fourier transformed
representation

Non-QRAM input models: classical access [e.g. Arunachalam et al.
(arXiv:2010.02174)]

Investigating the potential for NISQ application in a QRAM-free model,
optimising circuit constructions
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For more..

NeurIPS 2020: H Yamasaki, S Subramanian, S Sonoda, M Koashi;
Learning with Optimized Random Features: Exponential Speedup

by Quantum Machine Learning without Sparsity and Low-Rank

Assumptions

Full(er) paper: arXiv:2004.10756

More verbose explanations and details: S Subramanian (2020). Quantum
Algorithms for Matrix Problems and Machine Learning (Doctoral thesis).
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Thank you!

Sathya.Subramanian@warwick.ac.uk Quantum ML (arXiv:2004.10756) 24 / 24


	Introduction
	Supervised Learning
	Random Features
	Motivation for invoking QML

	Main result
	Proof Components
	Input model: QRAM
	Implementing matrix functions: QSVT
	Avoiding sparsity and low-rank assumptions: QFT

	Summary and Outlook

