Decoding Quantum Surface Codes via Belief-Propagation

(an extended work of DOI: 10.1109/JSAIT.2020.3011758)

Kao-Yueh Kuo and Ching-Yi Lai

Institute of Communications Engineering, National Yang Ming Chiao Tung University, Hsinchu 30010, Taiwan

2021 Feb.

Kao-Yueh Kuo and Ching-Yi Lai (Institute oDecoding Quantum Surface Codes via Belief-

2021 Feb. 1 / 30

Motivation

- Quantum states (e.g., qubits) are sensitive and error-prone.
- **Quantum surface codes** (a kind of *stabilizer codes*) provide an implementable topological structure for quantum error-correction.
- Since the coherence decays quickly, a fast decoding is desired.
- For an N-qubit surface code, the often-mentioned decoding algorithms have a complexity $O(N^2)$ (by minimum-weight-matching (MWM)) or $O(N \log N)$ (by renormalization-group (RG)).
- We intend to use **belief-propagation (BP)**, which has a complexity $O(N\tau)$, where τ is the number of iteration, $\tau = O(\log \log N)$ for a well BP convergence.
- The **practical complexity** and **decoding performance** of BP, for decoding surface (or stabilizer) codes, need to be improved.

< 同 > < 三 > < 三 >

Stabilizer codes

• \mathcal{G}_N : the N-fold Pauli group.

$$\mathcal{G}_N = \left\{ E = \omega E_1 \otimes \cdots \otimes E_N \mid \omega \in \{\pm 1, \pm i\}, E_n \in \{I, X, Y, Z\} \right\},\$$

where $I = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}$, $X = \begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix}$, $Z = \begin{bmatrix} 1 & 0 \\ 0 & -1 \end{bmatrix}$, and Y = iXZ.

- It suffices to discard ω and denote, e.g., if N = 5, $I \otimes Z \otimes X \otimes I \otimes Y = IZXIY = Z_2X_3Y_5.$
- {I, X, Y, Z}^N ⊂ G_N: all positive-phase elements in G_N, forming a basis for unitary matrices on C^{2^N}.
- $\{S_m\}_{m=1}^{N-K} \subset \{I, X, Y, Z\}^N$: a set of N K independent and commuting generators, i.e.,
 - S_m cannot be generated by other $S_{m'}$'s; and $S_m S_{m'} = S_{m'} S_m$.
- $\mathcal{S} < \mathcal{G}_N$: a stabilizer group generated by S_m 's.
 - An $F \in S$ is called a **stabilizer**. $-I^{\otimes N}$ will not in S.
- $\mathcal{C}(\mathcal{S})$: an [[N, K]] stabilizer code (a 2^{K} -dim. subspace in $\mathbb{C}^{2^{N}}$),

$$\mathcal{C}(\mathcal{S}) = \{ |\psi\rangle \in \mathbb{C}^{2^N} \mid F \mid \psi\rangle = |\psi\rangle \ \forall \ F \in \mathcal{S} \}.$$

• • = • • = •

Measurement

• $E = E_1 \cdots E_N \in \{I, X, Y, Z\}^N$: an (unknown) *N*-qubit Pauli error. • $S = [S_{mn}] = \begin{bmatrix} S_1 \\ \vdots \\ S_M \end{bmatrix} \in \{I, X, Y, Z\}^{M \times N}$: a check matrix, where $M \ge N - K$ and

$$S_m = S_{m1} \cdots S_{mN} \in \{I, X, Y, Z\}^N$$

corresponds to the *m*th measurement $\left\{\frac{I+S_m}{2}, \frac{I-S_m}{2}\right\}$.

• For any two Pauli operators F, F', denote

 $\langle F, F' \rangle = 0$ if F, F' commte, and $\langle F, F' \rangle = 1$ if F, F' anticommte.

• $z = (z_1, \dots, z_M) \in \{0, 1\}^M$: a binary (error) syndrome, where

$$z_m = \langle E, S_m \rangle = \sum_{n=1}^N \langle E_n, S_{mn} \rangle \mod 2.$$

Decoding

p_n = (p_n^I, p_n^X, p_n^Y, p_n^Z): the initial distribution of E_n according to some error model, e.g., for a **depolarizing channel** with error rate ε,

$$p_n = (1 - \epsilon, \epsilon/3, \epsilon/3, \epsilon/3).$$

• A decoding should have, given $S\in\{I,X,Y,Z\}^{M\times N}$, $z\in\{0,1\}^M$, and optionally $\{p_n\}_{n=1}^N$,

$$\operatorname{Dec}(S, z, \{p_n\}_{n=1}^N) = \hat{E}$$

s.t. $\hat{E} \in ES$ with a probability as high as possible.

- \hat{E}^{\dagger} will be applied as the correction.
- We may denote $\hat{E} = \text{Dec}(z)$ by assuming S and $\{p_n\}_{n=1}^N$ fixed.

Correction radius

- wt(E): the weight (number of non-identity entries) of an $E \in \mathcal{G}_N$.
- d: the (minimum) distance of the code $\mathcal{C}(\mathcal{S})$ defined as

 $d = \min\{\operatorname{wt}(E) \mid E \in \{I, X, Y, Z\}^N \setminus \mathcal{S}, \ \langle E, S_m \rangle = 0 \ \forall \, m\}.$

- $\gamma_d = t_d/N$: normalized correctable radius (with probability = 1) of **bounded-distance decoding** (BDD), where $t_d = \lfloor \frac{d-1}{2} \rfloor$.
- $\gamma_s = t_s/N$: normalized correctable radius (with probability ≈ 1) of syndrome-based decoding (SBD), based on collecting $\hat{E} = \text{Dec}(z)$ for all $z \in \{0, 1\}^M$.
 - For most channels, minimizing wt(E) can maximize P(E).
 - If $\hat{E} = \underset{\substack{E \in \mathcal{G}_N:\\ \langle E, S_m \rangle = z_m \ \forall \ m}}{\operatorname{arg min}} \operatorname{wt}(E)$, then $t_s \ge t_d$; but t_s is hard to compute.
- $\gamma = t/N$: normalized correctable radius (with probability ≈ 1) of SBD extended by **degeneracy**, based on collecting all errors in

$$\{E \in \mathcal{G}_N \mid E \in \hat{ES}, \ \hat{E} = \operatorname{Dec}(z), \ z \in \{0,1\}^M\}.$$

▶ t is again hard to compute, but it could be $\gamma_{-} > 0$ even if $\gamma_{d} \rightarrow 0$.

Surface codes (due to Kitaev)

- $[[N = L^2, K = 1, d = L]]$ stabilizer codes, with odd $L \ge 3$.
- One qubit formation is encoded (protected) by an $L \times L$ lattice.
- $\bullet~\mbox{For example},~L=3,$ an [[N=9,K=1,d=3]] code:

Logical basis states:

 $\begin{array}{l} |0\rangle \mapsto |0_{\rm L}\rangle \propto |00000000\rangle + |11000000\rangle + |011011000\rangle + |101011000\rangle + |000110110\rangle + \\ |110110110\rangle + |011101110\rangle + |101101110\rangle + |000000011\rangle + |110000011\rangle + |011011011\rangle + \\ |101011011\rangle + |000110101\rangle + |110110101\rangle + |011101101\rangle + |101101101\rangle \end{array}$

 $\begin{array}{l} |1\rangle \mapsto |1_{L}\rangle \propto |11111111\rangle + |00111111\rangle + |100100111\rangle + |010100111\rangle + |111001001\rangle + \\ |001001001\rangle + |100010001\rangle + |010010001\rangle + |111111100\rangle + |001111100\rangle + |10010010\rangle + \\ |010100100\rangle + |111001010\rangle + |001001010\rangle + |100010010\rangle + |010010010\rangle - - - \\ \end{array}$

Example errors and syndromes

For $S_m = Z_1 Z_2 Z_3 Z_4$ or $X_1 X_2 X_3 X_4$, the measurement is as simple as

[MWM]: D. S. Wang, A. G. Fowler, A. M. Stephens, and L. C. L. Hollenberg, Threshold error rates for the toric and planar codes, Quant. Inf. Comput. 10, p. 456, 2010.

(日) (同) (日) (日)

• [[9,1,3]]: since d = 3, it can correct any weight-one errors.

if
$$E = Z_1$$
, then $z = (1, 0, 0, 0, 0, 0, 0, 0, 0)$

 $Z_9 |0_L\rangle \propto$

. . . .

 $\begin{array}{l} Z_9 \mid \! |1_L \rangle \propto \\ \mid \! 11111111 \rangle + \mid \! 001111111 \rangle + \mid \! 100100111 \rangle + \mid \! 010100111 \rangle + \mid \! 111001001 \rangle + \mid \! 001001001 \rangle + \mid \! 100010001 \rangle + \mid \! 1000100001 \rangle + \mid \! 100010000 \rangle - \mid \! 11111100 \rangle - \mid \! 001011000 \rangle - \mid \! 100100100 \rangle - \mid \! 111001001 \rangle - \mid \! 100100100 \rangle - \mid \! 111001001 \rangle - \mid \! 100100100 \rangle - \mid \! 10000000 \rangle - \mid \! 100000000 \rangle - \mid \! 1$

if
$$E = X_1$$
, then $z = (0, 1, 0, 0, 0, 0, 0, 0)$

```
 \begin{array}{l} X_9 \left| 1_L \right\rangle \propto \left| 11111110 \right\rangle + \left| 00111111 \right\rangle + \left| 10010011 \right\rangle + \left| 01010011 \right\rangle + \left| 11100100 \right\rangle + \left| 00100100 \right\rangle + \left| 10001000 \right\rangle + \left| 1111111 \right\rangle + \left| 00111110 \right\rangle + \left| 10010010 \right\rangle + \left| 01010010 \right\rangle + \left| 11100101 \right\rangle + \left| 11001001 \right\rangle + \left| 11100101 \right\rangle + \left| 10001001 \right\rangle + \left| 11100101 \right\rangle + \left| 10001001 \right\rangle + \left| 100010001 \right\rangle + \left| 100010001 \right\rangle + \left| 1000000001 \right\rangle + \left| 1000000000
```

if
$$E = Y_1$$
, then $z = (1, 1, 0, 0, 0, 0, 0, 0)$

The asymptotic correction radius of surface codes

• Let ρ be a codeword state and $E\rho E^{\dagger}$ be a noisy state, $E \in \mathcal{G}_N$.

$$\begin{split} \rho &= \alpha \left| 1_{\rm L} \right\rangle \left\langle 1_{\rm L} \right| + \beta \left| 0_{\rm L} \right\rangle \left\langle 0_{\rm L} \right| & \stackrel{E}{\longmapsto} & E \rho E^{\dagger} \\ \operatorname{Meas}(E \rho E^{\dagger}) &= E \rho E^{\dagger} \quad \text{with a syndrome } z \in \{0, 1\}^{N-K} \end{split}$$

where the measurement will not affect the state $E\rho E^{\dagger}.$

- The decoding is expected to output \hat{E} with smallest-weight error first.
- For example, [[9,1,3]]:

$$\hat{E} = Z_1$$
 is expected when $z = (1, 0, 0, 0, 0, 0, 0, 0);$

- $\hat{E} = X_1$ is expected when z = (0, 1, 0, 0, 0, 0, 0, 0);
- $\hat{E}=Y_1$ is expected when z=(1,1,0,0,0,0,0,0);
- \bullet Since there are many low-weight stabilizers, γ grows as N increases.
 - \blacktriangleright For an optimum decoding, $\gamma \rightarrow 18.9\% = {\rm quantum}$ hashing bound
 - (= quantum Hamming bound for small $\frac{K}{N} \rightarrow 0$).
 - \blacktriangleright Threshold: the achievable γ of some decoding algorithm.

Often-mentioned decoding algorithms

• Minimum-weight matching (MWM)

- X errors and Z errors separately decoded;
- based on the blossom algorithm (Edmonds, 1965), which has a complexity $O(N^3)$ and can be simplified to $O(N^2)$ for the case here.
- Achievable threshold $\approx 15.5\%$.

• Renormalization group (RG)

Toric codes:

- by concatenated decoding with a complexity $O(N \log N)$.
- Basic-RG threshold $\approx 7.8\%$.
- Improved-RG threshold $\approx 15.2\%$ (handling RG boundaries additionally).
- BP + Improved-RG threshold $\approx 16.4\%$.

[RG]: G. Duclos-Cianci and D. Poulin, Fast decoders for topological quantum codes, Phys. Rev. Lett. 104, p. 050504, 2010.

2021 Feb. 10 / 30

BP decoding of quantum codes

BP, as mentioned, has a complexity almost linear in N.

BP issues for decoding quantum codes:

- Complexity: handling I, X, Y, Z needs a **quaternary BP** (BP₄).
 - ▶ It is 16 times more complex than the classical **binary BP** (BP₂).
- Performance: **short cycles** in the check matrix's **Tanner graph** will affect the decoding convergence & degrade the decoding performance.

Our approach:

• Refine & Improve it as a BP_4 with additional memory effect (MBP₄):

 $\begin{array}{cccc} \mbox{(Original) } \mathsf{BP}_4 & \xrightarrow{\mbox{refine}} & \mathsf{Refined } \mathsf{BP}_4 & \xrightarrow{\mbox{improve}} & \mathsf{MBP}_4 \ (\alpha_i) \\ & (\mbox{equivalent to } \mathsf{BP}_4 \ but & (\mbox{normalize the scalar messages by} \\ & \mbox{with scalar messages)} & \alpha_i \ \mbox{with additional memory effect)} \\ & \textit{lower complexity} & \textit{improved performance} \end{array}$

★ Ξ >

BP: Message Passing on Tanner Graph

• BP decoding is an iterative **message-passing** algorithm run on a bipartite graph (called **Tanner graph**) defined by *S*.

• For example,
$$S = \begin{bmatrix} X & Y & I \\ Z & Z & Y \end{bmatrix}$$
 has a Tanner graph:

$$(S_1): \langle E_1, X \rangle + \langle E_2, Y \rangle = z_1$$

----- X

 $(S_2): \langle E_1, Z \rangle + \langle E_2, Z \rangle + \langle E_3, Y \rangle = z_2$

This graph contains a cycle of length 4.

• BP₄ starts with an initial belief (for the error in each qubit)

$$p_n = (p_n^I, p_n^X, p_n^Y, p_n^Z) \quad \left(\text{here} = (1 - \epsilon_0, \frac{\epsilon_0}{3}, \frac{\epsilon_0}{3}, \frac{\epsilon_0}{3})\right) \tag{1}$$

(given S and z) to compute an updated belief

$$q_n = (q_n^I, q_n^X, q_n^Y, q_n^Z) \tag{2}$$

and infer $\hat{E}_n = \arg \max_{W \in \{I, X, Y, Z\}} q_n^W$.

The Message Passing

• BP₂ (classical case):

- The connected edges depends on a (parity-)check matrix $H \in \{0,1\}^{M \times N}$
- Updating the belief at n is like a tree.

• BP is close to maximum-likelihood decoding (MLD) if *H* is designed without short cycles.

- BP₄ (quantum case):
- The scenarios is similar, if we draw by S:

- But BP₄ passes vectors of length 4, unlike that BP₂ passes scalars.
- This increases the complexity 16 times.
- The Tanner graph of a large *S* inevitably has many short cycles due to commutation property:
- creating strong dependencies between the messages inputting to a node, possibly making BP far from MLD.

[Gal]: R. G. Gallager, Low-density parity-check codes (MIT Press, Cambridge, MA, 1963)

Kao-Yueh Kuo and Ching-Yi Lai (Institute oDecoding Quantum Surface Codes via Belief-

Original BP₄: (every message is a vector)

• To complete the 1st iteration:

variable node \boldsymbol{n} passes to check node \boldsymbol{m} the message

 $\boldsymbol{q}_{n \rightarrow m} = (q_{mn}^{I}, q_{mn}^{X}, q_{mn}^{Y}, q_{mn}^{Z}) = \boldsymbol{p}_{n},$ and check node m passes to variable node n the message $r_{m \to n} = (r_{mn}^{I}, r_{mn}^{X}, r_{mn}^{Y}, p_{mn}^{Z})$, with $r_{mn}^{W} = \sum_{E|_{\mathcal{N}(m)}: E_n = W,} \left(\prod_{n' \in \mathcal{N}(m) \setminus n} q_{mn'}^{E_{n'}}\right)$ $\langle E|_{\mathcal{N}(m)}, S_m|_{\mathcal{N}(m)} \rangle = z_m$ for $W \in \{I, X, Y, Z\}$, where $\mathcal{N}(m) = \{n \mid S_{mn} \neq I\}$. • For any next iteration, $\pmb{q}_{n\rightarrow m}=(q^I_{mn},q^X_{mn},q^Y_{mn},q^Z_{mn})$ with $q_{mn}^W \propto p_n^W \qquad \prod \qquad r_{m'n}^W$ $m' \in \mathcal{M}(n) \setminus m$ where $\mathcal{M}(n) = \{m \mid S_{mn} \neq I\}.$ • To infer \hat{E}_n is by $\boldsymbol{q}_n = (q_n^I, q_n^X, q_n^Y, q_n^Z)$ with $q_n^W = p_n^W \prod_{m \in \mathcal{M}(n)} r_{mn}^W$

Refine and Improve

To refine: (to have a lower complexity)

- An observation: $\langle E_1, S_{m1} \rangle = z_m + \sum_{n=2}^N \langle E_2, S_{mn} \rangle \mod 2$
 - In other words, the message from a neighboring check will tell us more likely whether the error E_1 commutes or anti-commutes with S_{m1}
- We derived a refined algorithm by, e.g., if $S_{mn} = X$, then passing $d_{n \to m} = (q_{mn}^I + q_{mn}^X) (q_{mn}^Y + q_{mn}^Z)$ is sufficient for computation.
- Every message becomes a scalar, and the check-node efficiency is 16-fold improved.

Using scalar messages allows simple improvement:

- Ever message can be normalized by a parameter $\alpha_i > 0$.
- Wrong beliefs caused by short cycles are usually suppressed.
- We do a derivation by joining gradient descend (GD) & BP rules to have a BP₄ with additional memory effect (MBP₄).¹ (There is another parameter β after derivation; but α_i is more dominated so we focus on α_i)

¹BP is like a recurrent neural network (RNN)—we found what we create is like **inhibition** between nodes, which enhances the perception capability in Hopfield nets. $\langle \pm \rangle + \langle \pm \rangle = \langle \pm \rangle$

MBP_4 with a parameter α_i

- The most high-complexity step is refined.
- The computation in (3) and (4) improves the performance.

(The nonlinear function can be efficiently implemented by Schraudolph's approximation)

• Using (3) without (4) is the classical normalized BP (w/o) additional memory.

Algorithm 1 : Quaternary BP (BP₄) with message normalization and inhibition between nodes controlled by α_i . **Input:** $S \in \{I, X, Y, Z\}^{M \times N}, \{p_n = (p_n^I, p_n^X, p_n^Y, p_n^Z)\}_{n=1}^N,$ target $z \in \{0, 1\}^M$, and a real parameter α_i . **Initialization.** For n = 1, 2, ..., N and $m \in \mathcal{M}(n)$, let $d_{n \to m} = q_{n \to m}^{(0)} - q_{n \to m}^{(1)},$ where $q_{n \to m}^{(0)} = p_n^I + p_n^{S_{mn}}$ and $q_{n \to m}^{(1)} = 1 - q_{n \to m}^{(0)}$. **Horizontal Step.** For m = 1, 2, ..., M and $n \in \mathcal{N}(m)$, compute $\delta_{m \to n} = (-1)^{z_m} \qquad \prod \qquad d_{n' \to m},$ $n' \in \mathcal{N}(m) \setminus \mathcal{N}(m)$ Vertical Step. For n = 1, 2, ..., N and $m \in \mathcal{M}(n)$, do: Compute $r_{m \to n}^{(0)} = (\frac{1 + \delta_{m \to n}}{2})^{1/\alpha_i}, \ r_{m \to n}^{(1)} = (\frac{1 - \delta_{m \to n}}{2})^{1/\alpha_i},$ (3) $q_{n \to m}^I = p_n^I \qquad \prod \qquad r_{m' \to n}^{(0)},$ $m' \in \mathcal{M}(n) \setminus i$ $q_{n \to m}^{W} = p_{n}^{W} \qquad \prod \qquad r_{m' \to n}^{\langle W, S_{m'n} \rangle}, \text{ for } W \in \{X, Y, Z\}.$ $m' \in \mathcal{M}(n) \setminus m$

Let

$$\begin{aligned} q_{n \to m}^{(0)} &= a_{mn} \left(q_{n \to m}^{I} + q_{n \to m}^{S_{mn}} \right) / \left(\frac{1 + \delta_{m \to m}}{2} \right)^{1 - 1/\alpha_i}, \\ q_{n \to m}^{(1)} &= a_{mn} \left(\sum_{W'} q_{M' \to m}^{W'} \right) / \left(\frac{1 - \delta_{m \to m}}{2} \right)^{1 - 1/\alpha_i}, \end{aligned}$$

where $W' \in \{X, Y, Z\} \setminus S_{mn}$ and a_{mn} is a chosen scalar such that $q_{n \to m}^{(0)} + q_{n \to m}^{(1)} = 1$.

• Update:
$$d_{n \to m} = q_{n \to m}^{(\circ)} - q_{n \to m}^{(\circ)}$$
.

Hard Decision. For $n = 1, 2, \ldots, N$, compute

$$\begin{split} q_n^I &= p_n^I \prod_{m \in \mathcal{M}(n)} r_{mn}^{(0)} \\ q_n^W &= p_n^W \prod_{m \in \mathcal{M}(n)} r_{mn}^{(W,S_{mn})}, \text{ for } W \in \{X,Y,Z\}. \end{split}$$

Let $\hat{E}_n = \arg \max_{W \in \{I, X, Y, Z\}} q_n^W$.

- Let $\hat{E} = \hat{E}_1 \hat{E}_2 \cdots \hat{E}_N$.
 - If ⟨Ê, S_m⟩ = z_m for m = 1, 2, ..., M, halt and return "SUCCESS";
 - otherwise, if a maximum number of iterations is reached, halt and return "FAIL";
 - otherwise, repeat from the horizontal step.

シイワ

The parameter α_i (assume $\alpha_i > 0$)

- Against short cycles: original BP decouples the n → m message and the m → n message that are passed on the same edge.
 - ▶ suitable for the case of less short cycles; need a different strategy here.
 - Introducing α_i (especially in (4)) breaks the decoupling rule and creates strong memory effect at check-node side (fed back from variable-node side).
- Properties of α_i , related to the degeneracy:
 - ► A code is said to have strong degeneracy if there are many measurements with wt(S_m) ≪ d.
 - ► A larger α_i > 1 corresponds to a careful (smaller-step) search and the memory effect provides suppression, suitable for codes with less degeneracy.
 - A smaller α_i < 1 corresponds to an aggregate (larger-step) search and the memory effect provides *momentum*, suitable for codes with strong degeneracy.

• • = • • = •

BP as GD, and different schedule

- Classically, BP is like doing a GD opt.: LHS (a) (c). (need $\alpha_i > 1$)
- If $d \gg \operatorname{wt}(S_m)$, it has strong degeneracy: LHS (b) (d). (need $\alpha_i < 1$)
- To take an aggregate update, using a serial schedule also helps.

(c) Serial Update (variable node 3)

2021 Feb.

The five-qubit code [[N = 5, K = 1, d = 3]]

• The code does not have strong degeneracy but has many short cycles:

$$S = \begin{bmatrix} X & Z & Z & X & I \\ I & X & Z & Z & X \\ X & I & X & Z & Z \\ Z & X & I & X & Z \end{bmatrix}$$

This code should be able to correct any weight-one errors.

- ▶ BP₄ without α_i (MBP₄ with $\alpha_i = 1$) cannot correct the error *IIIYI*.
- BP₄ with $\alpha_i \approx 1.5$ successfully corrects all weight-one errors.

The convergence (for decoding the error *IIIYI* by setting $\epsilon_0 = 0.003$)

 Without using α_i (equivalent to MBP₄ with α_i = 1), each output belief q_n, n = 1, 2, 3, 4, 5, keeps oscillating:

• With $\alpha_i = 1.5$, it converges correctly by suppressing the wrong belief:

The convergence (cont.)

• Define $\delta_m \triangleq \prod_{n \in \mathcal{N}(m)} \left(\hat{q}_{nm}^{(0)} - \hat{q}_{nm}^{(1)} \right)$ and plot the change: (IIIYI causes all $z_m = 1$ and the same $\delta_m \forall m$ during iteration; target $\delta_m < 0$)

(a) without α_i (note: the swing is very tiny). (b) with $\alpha_i = 1.5$.

Recall that α_i introduces memory-effect:

This is like a simplified long short-term memory (LSTM) method.

Surface code: strong degeneracy (an example by L = 7)

- Consider the error $E = X_4 Z_{15} Z_{16} Y_{23} Z_{33} Y_{39} Y_{40}$
- $\operatorname{wt}(E) = 7 > \operatorname{wt}(S_m)$: it needs $\alpha_i < 1$ and serial schedule to decode

 X
 X
 X
 X
 X
 X
 X
 X
 X
 X
 X
 X
 X
 X
 X
 X
 X
 X
 X
 X
 X
 X
 X
 X
 X
 X
 X
 X
 X
 X
 X
 X
 X
 X
 X
 X
 X
 X
 X
 X
 X
 X
 X
 X
 X
 X
 X
 X
 X
 X
 X
 X
 X
 X
 X
 X
 X
 X
 X
 X
 X
 X
 X
 X
 X
 X
 X
 X
 X
 X
 X
 X
 X
 X
 X
 X
 X
 X
 X
 X
 X
 X
 X
 X
 X
 X
 X
 X
 X
 X
 X
 X
 X
 X
 X
 X
 X
 X
 X
 X
 X
 X
 X
 X
 X
 X
 X

Parallel BP₄ with $\alpha = 1$

⊙ — Parallel BP₄

Serial BP₄, $\alpha_i = 0.65$ with memory

BP runs a GD optimization with an energy function positively correlated to the number of unmatched syndromed bits.

Kao-Yueh Kuo and Ching-Yi Lai (Institute oDecoding Quantum Surface Codes via Belief-

Surface codes $[[N = L^2, K = 1, d = L]]$

• Serial MBP₄, with small $\alpha_i < 1$, provides good results.

2021 Feb. 23 / 30

< ∃ ►

Improvement is from exploiting the degeneracy

• Write the logical error rate as:

$$P(\hat{E} \notin ES) = P(\hat{E} \notin ES, \hat{E} \neq E)$$
$$= P(\hat{E} \neq E) \times P(\hat{E} \notin ES \mid \hat{E} \neq E) = \frac{n_0}{n} \times \frac{n_e}{n_0}$$

• We plot $\frac{n_0}{n}$ and $\frac{n_e}{n_0}$ (both the lower the better, and the lower $\frac{n_e}{n_0}$ means the more the decoder exploits the degeneracy):

Two schemes have similar $P(\hat{E} \neq E) = \frac{n_0}{n}$.

Kao-Yueh Kuo and Ching-Yi Lai (Institute oDecoding Quantum Surface Codes via Belief-

The proposed scheme has a much lower $\frac{n_e}{n_0}$.

The convergence behavior

• By viewing the **average number of iterations**, it shows that the improvement is achieved by better algorithm convergence, rather than spending complexity on doing more iterations:

2021 Feb. 25 / 30

Further improvement

- BP can do about 2×BDD [Gal].
- A good threshold needs about $(0.189\sqrt{N} \times 2) \times \text{BDD}$
- MBP₄ can be improved by a technique like Monte Carlo sampling (sometimes called parallel tempering): we use about 50 instances

- No need to combine the solutions from different MBP₄ instances. And if it runs in a sequential order, after the first syndrome matched indication = 1, the remaining instances can be skipped.
- \blacktriangleright Precisely estimating an α^* can again use only one instance.^2

²Interestingly, this possible simplification is similar to an observation when using Hopfield nets to do simulated-annealing: [Hop] J. Hopfield and D. Tank, "neural" computation of decisions in optimization problems, Biological cybernetics 52(1985). (Neurophysical Computation of the computation of the computation of the computation problems, Biological cybernetics 52(1985).

Further improvement (surface codes)

• Achieving a threshold $\sim 15.5\%$ to 16% for decoding surface codes.

2021 Feb. 27 / 30

A D F A B F A B F A B

Further improvement (toric codes)

• If change to toric codes (without boundary conditions),

 $[[N=L^2,K=2,d=L]]$ with even $L\geq 2,$ e.g., L=4:

 \bullet Achieving a threshold $\sim 17\%$ to 17.5% for decoding toric codes.

Conclusion and Ongoing Work

- We refine the BP₄ decoding of quantum codes to have a lower (check-node) complexity (16-fold improved).
- We improve the refined BP₄ as an MBP₄ with additional memory effect, keeping the same asymptotic complexity.
- We simulate the MBP_4 decoding performance for the [[5,1,3]] code, surface codes, and toric codes.
- MBP₄ significantly improves the performance by exploiting the degeneracy, and it is achieved with a better convergence.
- The performance can be further improved by choosing an optimum α^* per the syndrome, achieving a threshold $\sim 15.5\%$ to 16% for decoding surface codes and $\sim 17\%$ to 17.5% for decoding toric codes.

Ongoing work:

• Partial parallelism; fault tolerance; estimating $\alpha_i^*;$ proof of convergence.

(4) (3) (4) (4) (4)

References

R. G. Gallager, Low-Density Parity-Check Codes, Cambridge, MA: MIT Press, 1963.

- D. J. C. MacKay, "Good error-correcting codes based on very sparse matrices," *IEEE Trans. Inf. Theory*, vol. 45, pp. 399–431, 1999.
- R. Tanner, "A recursive approach to low complexity codes," IEEE Trans. Inf. Theory, vol. 27, pp. 533-547, 1981.
- J. Pearl, Probabilistic reasoning in intelligent systems: networks of plausible inference. Morgan Kaufmann, 1988.

- A. Y. Kitaev, "Fault-tolerant quantum computation by anyons," Ann. Phys., vol. 303, pp. 2–30, 2003.
- D. Poulin and Y. Chung, "On the iterative decoding of sparse quantum codes," *Quantum Inf. Comput.*, vol. 8, pp. 987–1000, 2008.

- K.-Y. Kuo and C.-Y. Lai, "Refined belief propagation decoding of sparse-graph quantum codes," accepted by IEEE J. Sel. Areas Inf. Theory, 2020. (DOI:10.1109/JSAIT.2020.3011758)
- J. J. Hopfield, "Neurons with graded response have collective computational properties like those of two-state neurons," *Proc. Nat. Acad. Sci.*, vol. 81, pp. 3088–3092, 1984.
- S. Hochreiter and J. Schmidhuber, "Long short-term memory," Neural Comput., vol. 9, no. 8, pp. 1735–1780, 1997.
- I. Sutskever, J. Martens, G. Dahl, and G. Hinton, "On the importance of initialization and momentum in deep learning," in *Proc. Int. Conf. Mach. Learn.*, 2013, pp. 1139–1147.
- N. N. Schraudolph, "A fast, compact approximation of the exponential function," *Neural Comput.*, vol. 11, no. 4, pp. 853–862, 1999.

< □ > < □ > < □ > < □ > < □ > < □ >

2021 Feb.

30 / 30