# Continuously Controllable Non-Markovianity in Phase Relaxation

Mikio Nakahara 中原幹夫

## Research Institute for Sience and Engineering, Kindai University, Japan

February 2021 @NCTS Annual Theory Meeting

#### Joint Work





### Joint work with Shingo Kukita (Shanghai University, Kindai University) and Yasushi Kondo (Kindai University)

Reference; New J. Phys. 22, 103048 (2020).

## 1. Introduction

- Quantum devices often require small size environment, ultra low temperature and/or ultra high vacuum.
- Solution The quantum dynamics can be non-Markovian.
- Non-Markovian relaxation is studied in a controllable way here.
- NMR is used to simulate such an open quantum system experimentally.
- The Gorini–Kossakowski–Lindblad–Sudarshan (GKLS) master equation is solved exactly for interesting cases and the results are compared with NMR experiment.

#### 2.1 Basic Idea



(a) is the conventional situation in which quantum information of System I "leaks" to the Markovian environment. We assume System I is made of a single qubit from now on.

We analyze the case (b), in which the information leaks to the environment through System II. Interaction between Systems I and II is treated rigorously. The coupling strength between Systems I and II is controllable.

#### 2.2 Markovian Environment (Case (a))

Let  $\rho$  be a System I state. Find  $\rho$  at t> 0 by solving the GKLS eqn.

$$\frac{d\rho}{dt} = -i[H,\rho] + \mathcal{L}[\rho].$$

H is the Hamiltonian of System I and  $\mathcal{L}$  is called the Lindbladian;

$$\mathcal{L}[\rho] := \sum_{i} \gamma_i (2L_i \rho L_i^{\dagger} - \{L_i^{\dagger} L_i, \rho\}).$$

Consider a case in which the environment randomly flips System I qubit;

$$\mathcal{L}[\rho] := \sum_{\pm} \gamma_{\pm} \left( 2 \frac{\sigma_{\pm} \rho \sigma_{\mp}}{4} - \left\{ \frac{\sigma_{\mp} \sigma_{\pm}}{4}, \rho \right\} \right).$$

 $\sigma_{\pm} = (\sigma_x \pm i\sigma_y)/2$ .  $\gamma_{\pm}$  represents the flip-flop  $(|\downarrow\rangle \leftrightarrow |\uparrow\rangle)$  rate of the qubit. Assume they are symmetric;  $\gamma_+ = \gamma_- := \gamma_I$ .

#### 2.2 Markovian Environment (Case (a))

We take H = 0 for simplicity. Then the GKLS eqn. is

$$\frac{d\rho}{dt} = \sum_{\pm} \gamma_{\mathrm{I}} \left( 2 \frac{\sigma_{\pm} \rho \sigma_{\mp}}{4} - \left\{ \frac{\sigma_{\mp} \sigma_{\pm}}{4}, \rho \right\} \right).$$

This is solved exactly leading to exponential relaxation with a characteristic time  $2/\gamma_{\rm I}.$ 

Remark: When the System I qubit is under a magnetic field along the z-axis, the GKLN eqn. is given by

$$\frac{d\rho}{dt} = -i\left[\omega_0 \frac{\sigma_z}{2}, \rho\right] + \sum_{\pm} \gamma \left(2\frac{\sigma_{\pm}\rho\sigma_{\mp}}{4} - \left\{\frac{\sigma_{\mp}\sigma_{\pm}}{4}, \rho\right\}\right).$$

The first term can be dropped if we move to the rotating frame.

#### 2.3 Non-Markovian Environment: 1 + 1-Case (Case (b))

Assume both System I and System II are made of 1 qubit. Let

$$p^{(1)} = \begin{pmatrix} \rho_{11} & \rho_{12} & \rho_{13} & \rho_{14} \\ \rho_{12}^* & \rho_{22} & \rho_{23} & \rho_{24} \\ \rho_{13}^* & \rho_{23}^* & \rho_{33} & \rho_{34} \\ \rho_{14}^* & \rho_{24}^* & \rho_{34}^* & \rho_{44} \end{pmatrix}$$

be the state of the total system. Basis  $\{|00\rangle, |01\rangle, |10\rangle, |11\rangle\}$ .  $|ab\rangle = |a\rangle_0 \otimes |b\rangle_1 := |a\rangle_{\rm I}|b\rangle_{\rm II}.$ 

$$\mathcal{L}[\rho^{(1)}] = \sum_{i=0,1} \sum_{\pm} \gamma_i \left( 2 \frac{\sigma_{\pm}^{(i)} \rho^{(1)} \sigma_{\mp}^{(i)}}{4} - \left\{ \frac{\sigma_{\mp}^{(i)} \sigma_{\pm}^{(i)}}{4}, \rho^{(1)} \right\} \right) := \sum_{i=0,1} \mathcal{L}^{(i)}[\rho^{(1)}],$$

where  $\sigma_{\mu}^{(0)} = \sigma_{\mu} \otimes \sigma_0$  etc.  $\gamma_{\mathrm{I}} := \gamma_0, \gamma_{\mathrm{II}} := \gamma_1$ .

#### 2.3 Non-Markovian Environment: 1 + 1-Case (Case (b))

Let's take

$$H^{(1)} = H^{(1)}_J + H^{(1)}_{\omega_1}, \quad H^{(1)}_J := J \frac{\sigma^{(0)}_z \cdot \sigma^{(1)}_z}{4}, H^{(1)}_{\omega_1} := \omega_1 \frac{\sigma^{(1)}_x}{2}.$$

It is shown that  $\omega_1$  controls the effective coupling between qubits and also non-Markovianity of relaxation.

#### GKLS Eqn.

$$\frac{d\rho^{(1)}}{dt} = -i[\mathcal{H}^{(1)},\rho^{(1)}] + \mathcal{L}[\rho^{(1)}] = \mathcal{D}^{(1)}[\rho^{(1)}] + \mathcal{L}^{(0)}[\rho^{(1)}]$$
$$\mathcal{D}^{(1)}[\bullet] := -i\left[\mathcal{H}^{(1)}, \bullet\right] + \mathcal{L}^{(1)}[\bullet].$$

Solve this with the initial condition  $\rho^{(1)}(0) = |+\rangle\langle+| \otimes \sigma_0/2, |+\rangle = (|0\rangle + |1\rangle)/\sqrt{2}$ :

$$ho^{(1)}(0) = rac{1}{4} \left( egin{array}{cccc} 1 & 0 & 1 & 0 \ 0 & 1 & 0 & 1 \ 1 & 0 & 1 & 0 \ 0 & 1 & 0 & 1 \end{array} 
ight)$$

#### GKLS Eqn.

Let us expand  $\rho$  in terms of the generators of  $\mathfrak{sl}(2;\mathbb{C})$  and the unit matrix of qubit-0 as

$$\rho^{(1)} = \frac{\sigma_0^{(0)}}{2} \cdot \frac{A_1^{(1)} + A_2^{(1)}}{2} + \frac{\sigma_z^{(0)}}{2} \cdot \frac{A_1^{(1)} - A_2^{(1)}}{2} + \frac{\sigma_+^{(0)}}{2} \cdot B^{(1)} + \frac{\sigma_-^{(0)}}{2} \cdot (B^{(1)})^{\dagger},$$
$$A_1^{(1)} := \sigma_0 \otimes \begin{pmatrix} \rho_{11} & \rho_{12} \\ \rho_{12}^* & \rho_{22} \end{pmatrix}, A_2^{(1)} := \sigma_0 \otimes \begin{pmatrix} \rho_{33} & \rho_{34} \\ \rho_{34}^* & \rho_{44} \end{pmatrix}, B^{(1)} := \sigma_0 \otimes \begin{pmatrix} \rho_{13} & \rho_{14} \\ \rho_{23} & \rho_{24} \end{pmatrix}$$

Then the GLKS eqn. is decomposed as

$$\frac{dA_1^{(1)}}{dt} = f(A_1^{(1)}, A_2^{(1)}), \ \frac{dA_2^{(1)}}{dt} = g(A_1^{(1)}, A_2^{(1)}), \ \frac{dB^{(1)}}{dt} = h(B^{(1)}),$$

The dynamics of  $B^{(1)}$  is decoupled from those of  $A_1^{(1)}$ ,  $A_2^{(1)}$  and  $(B^{(1)})^{\dagger}$ . The 1st and the 2nd eqns have no dynamics for our initial conditions:  $f(A_1^{(1)}(0), A_2^{(1)}(0)) = g(A_1^{(1)}(0), A_2^{(1)}(0)) = 0 \rightarrow dA_1^{(1)}/dt = dA_2^{(1)}/dt = 0.$ 

#### GKLS Eqn.

Dynamics of  $B^{(1)}$ ; Initial condition  $B^{(1)}(0) = \sigma_0 \otimes \sigma_0/2$ . Factorize  $B^{(1)}(t)$  as  $B^{(1)} = e^{-\gamma_1 t/2} \tilde{B}^{(1)}(t)$  and substitute it to GKLS eqn. to find

$$\frac{d}{dt}(b_0, b_x, b_y, b_z)^t = M_0(b_0, b_x, b_y, b_z)^t$$

where 
$$\tilde{B}^{(1)} = \frac{1}{2} \sum_{\nu=0,x,y,z} b_{\nu} \sigma_{\nu}^{(1)}$$
 and  $M_0 := \frac{1}{2} \begin{pmatrix} 0 & 0 & 0 & -iJ \\ 0 & -\gamma_{\text{II}} & 0 & 0 \\ 0 & 0 & -\gamma_{\text{II}} & 2\omega_1 \\ -iJ & 0 & -2\omega_1 & -2\gamma_{\text{II}} \end{pmatrix}$ 

 $b_x$  is decoupled from the rest of components and  $b_x(t) = 0$  with our initial condition  $b_0 = 1, b_x = b_y = b_z = 0$  at t = 0. Then GKLS eqn is simplified as

$$\frac{d}{dt} \begin{pmatrix} b_0 \\ b_y \\ b_z \end{pmatrix} = M^t \begin{pmatrix} b_0 \\ b_y \\ b_z \end{pmatrix} \quad M := \frac{1}{2} \begin{pmatrix} 0 & 0 & -iJ \\ 0 & -\gamma_{\mathrm{II}} & 2\omega_1 \\ -iJ & -2\omega_1 & -2\gamma_{\mathrm{II}} \end{pmatrix}.$$

#### GKLS Eqn.

This equation is exactly solvable, see our NJP paper. The reduced density matrix is

$$\rho_{\rm I}^{(1)} = {\rm Tr}_{\rm II}(\rho^{(1)}) = \frac{1}{2} \begin{pmatrix} 1 & e^{-\gamma_{\rm I} t/2} b_0(t) \\ e^{-\gamma_{\rm I} t/2} b_0(t) & 1 \end{pmatrix}.$$

It can be shown that  $b_0(t) \in \mathbb{R}$  for  $\forall t > 0$ . Note that  $\rho_{\mathrm{I}}^{(1)}(0) = |+\rangle\langle+|$  and  $\rho_{\mathrm{I}}^{(1)}(\infty) = \sigma_0/2$ .

Remark:

$$b_0(t) = u_1 \exp(\lambda_1 t/2) + 2 \exp(\lambda_2^R t/2) (u_2^R \cos(\lambda_2^I t/2) - u_2^I \sin(\lambda_2^I t/2)).$$

#### 2.3 Non-Markovian Environment: 1 + n-Case (Case (b))

Let us generalize the previous analysis to  $n \ge 2$  cases. Consider a star-shaped network in which the central qubit (System I) couples with other qubits (System II) with the same strength J. No interactions among System II qubits.



Index 0 for System I while indices  $1 \le i \le n$  for System II. Basis vectors  $\{|00...00\rangle, |00...01\rangle, |00...11\rangle, ..., |11...10\rangle, |11...11\rangle\}, |ab...cd\rangle = |a\rangle_0 \otimes |b\rangle_1 \otimes ... \otimes |c\rangle_{n-1} \otimes |d\rangle_n.$ 

#### 2.3 Non-Markovian Environment: 1 + n-Case (Case (b))

Lindbladian is

$$\mathcal{L}[\rho] = \sum_{i=0}^{n} \sum_{\pm} \gamma_i \left( 2 \frac{\sigma_{\pm}^{(i)} \rho \sigma_{\mp}^{(i)}}{4} - \left\{ \frac{\sigma_{\mp}^{(i)} \sigma_{\pm}^{(i)}}{4}, \rho \right\} \right) := \sum_{i=0}^{n} \mathcal{L}^{(i)}[\rho]$$

where we assume  $\gamma_1=\gamma_2=\ldots\gamma_n=:\gamma_{\rm II}.$  The GKLS eqn. is

$$\begin{split} \frac{d\rho^{(n)}}{dt} &= -i[H,\rho^{(n)}] + \mathcal{L}[\rho^{(n)}] = \sum_{i=1}^{n} \mathcal{D}^{(i)}[\rho^{(n)}] + \mathcal{L}^{(0)}[\rho^{(n)}],\\ \mathcal{D}^{(i)}[\bullet] &:= -i\left[(H_{J}^{(i)} + H_{\omega_{1}}^{(i)}), \bullet\right] + \mathcal{L}^{(i)}[\bullet],\\ \rho^{(n)}(0) &= |+\rangle\langle +| \otimes (\frac{1}{2}\sigma_{0})^{\otimes n} = \frac{1}{2^{n+1}} \begin{pmatrix} \sigma_{0}^{\otimes n} & \sigma_{0}^{\otimes n} \\ \sigma_{0}^{\otimes n} & \sigma_{0}^{\otimes n} \end{pmatrix} \end{split}$$

Decompose 
$$\rho^{(n)}$$
 as  $\rho^{(n)} = \frac{\sigma_0^{(0)}}{2} \cdot \frac{A_1^{(n)} + A_2^{(n)}}{2} + \frac{\sigma_z^{(0)}}{2} \cdot \frac{A_1^{(n)} - A_2^{(n)}}{2} + \frac{\sigma_+^{(0)}}{2} \cdot B^{(n)} + \frac{\sigma_-^{(0)}}{2} \cdot (B^{(n)})^{\dagger} = \begin{pmatrix} A_1^{\prime (n)} & B^{\prime (n)} \\ (B^{\prime (n)})^{\dagger} & A_2^{\prime (n)} \end{pmatrix}.$ 

#### 2.3 Non-Markovian Environment: 1 + n-Case (Case (b))

With initial condition  $A_1^{(n)}(0) = A_2^{(n)}(0) = B^{(n)}(0) = (B^{(n)})^{\dagger}(0) = \sigma_0 \otimes \frac{1}{2^n} \sigma_0^{\otimes n}$ ,  $A_1^{(n)}$  and  $A_2^{(n)}$  are *t*-independent and  $B^{(n)}$  decouples with  $A_1^{(n)}$ ,  $A_2^{(n)}$  and  $B^{(n)\dagger}$  as before. By factoring  $B^{(n)}$  as  $e^{-\gamma_1 t/2} \tilde{B}^{(n)}$  as before, we get rid of the effect of  $\mathcal{L}^{(0)}$  and GKLS eqn. is written as

$$rac{d}{dt} \Big( rac{\sigma_+^{(0)}}{2} \cdot ilde{\mathcal{B}}^{(n)}(t) \Big) = \sum_{i=1}^n \mathcal{D}^{(i)} \left\lfloor rac{\sigma_+^{(0)}}{2} \cdot ilde{\mathcal{B}}^{(n)}(t) 
ight
brace$$

Since there is no correlations among System II qubits, we may introduce an Ansatz  $\tilde{B}^{(n)}(t) = \prod_{i=1}^{n} \varsigma^{(i)}(t)$ , where  $\varsigma^{(i)} = \frac{1}{2} \sum_{\nu=0,x,y,z} b_{\nu}^{(i)} \sigma_{\nu}^{(i)}$ . The dynamics of  $b_{x}^{(i)}$  decouples from those of other  $b_{\nu}^{(i)}$ 's. The initial condition  $b_{0}^{(i)}(0) = 1, b_{x}^{(i)}(0) = b_{y}^{(i)}(0) = b_{z}^{(i)}(0) = 0$  tells us that  $b_{x}^{(i)}(t)$  vanishes identically. The action of  $\mathcal{D}^{(i)}$  on  $\frac{1}{2}\sigma_{+}^{(0)} \cdot (\sigma_{\mu}^{(i)}/2)$  is

$$\mathcal{D}^{(i)}\left[\frac{\sigma_{+}^{(0)}}{2}\cdot\varsigma^{(i)}\right] = \frac{\sigma_{+}^{(0)}}{2}\cdot\sum_{\nu,\mu=0,y,z}b_{\nu}^{(i)}(M)_{\nu\mu}\frac{\sigma_{\mu}^{(i)}}{2}, \quad M = \frac{1}{2}\begin{pmatrix}0 & y & z\\ 0 & 0 & -iJ\\ 0 & -\gamma_{\mathrm{II}} & 2\omega_{1}\\ -iJ & -2\omega_{1} & -2\gamma_{\mathrm{II}}\end{pmatrix}$$

#### 2.3 Non-Markovian Environment: 1 + n-Case (Case (b))

This M is exactly the same as M for 1+1-case. We obtain the ODE for  $b_
u^{(i)}$  as

$$\frac{d}{dt}\begin{pmatrix}b_0^{(i)}\\b_y^{(i)}\\b_z^{(i)}\end{pmatrix}=M^t\begin{pmatrix}b_0^{(i)}\\b_y^{(i)}\\b_z^{(i)}\end{pmatrix},\qquad 1\leq i\leq n.$$

The solution is independent of i and easily found from the one for the 1 + 1-case. The reduced density matrix of System I is

$$\begin{split} \rho_{\mathrm{I}}^{(n)}(t) &:= \mathrm{Tr}_{\mathrm{II}} \, \rho^{(n)} = \frac{\sigma_{0}^{(0)}}{2} \cdot \mathrm{Tr}\left(\prod_{i=1}^{n} \frac{\sigma_{0}^{(i)}}{2}\right) + \mathrm{e}^{-\gamma_{\mathrm{I}}t/2} \left[\frac{\sigma_{+}^{(0)}}{2} \cdot \mathrm{Tr}\left(\prod_{i=1}^{n} \varsigma^{(i)}\right) + \mathrm{h.c.}\right] \\ &= \frac{1}{2} \begin{pmatrix} 1 & \mathrm{e}^{-\gamma_{\mathrm{I}}t/2} \left(b_{0}(t)\right)^{n} \\ \mathrm{e}^{-\gamma_{\mathrm{I}}t/2} \left(b_{0}(t)\right)^{n} & 1 \end{pmatrix}. \end{split}$$

Let us define  $\beta_n(t) := e^{-\gamma_1 t/2} (b_0(t))^n$  for later convenience. The first factor represents Markovian relaxation due to direct interaction with environment while the second factor represents non-Markovian relaxation through System II.

#### 2.4 Non-Markovianity Measure

It is possible to control non-Markovianity by controlling  $\omega_1$ . To quantify non-Markovianity, we introduce the trace distance  $D[\rho(t), \rho'(t)] = \text{Tr}|\rho(t) - \rho'(t)|/2$  of  $\rho$  and  $\rho'$  and define the measure

$$\mathcal{N}:=\max_{
ho(0),
ho'(0)}\int_{\Omega_+}rac{d}{dt}D[
ho(t),
ho'(t)]dt,$$

where  $\Omega_+ := \{t \in [0, \infty) | \frac{d}{dt} D[\rho(t), \rho'(t)] \ge 0\}.$ [H.P. Breuer, E.-M. Laine, and J. Piilo, Phys. Rev. Lett., **103**, 210401 (2009).]



#### 2.4 Non-Markovianity Measure

Consider an initial state

$$ho^{(n)}(t=0, heta):=rac{1}{2}\left(egin{array}{cc} 1 & e^{i heta}\ e^{-i heta} \end{array}
ight)\otimes \left(\prod_{i=1}^n rac{\sigma_0^{(i)}}{2}
ight).$$

Then at a later time t, the reduced density matrix is

$$ho_{\mathrm{I}}^{(n)}(t, heta) = rac{1}{2} egin{pmatrix} 1 & e^{i heta}eta_n(t) \ e^{-i heta}eta_n(t) & 1 \end{pmatrix}.$$

The trace distance of two such states is

$$D[
ho_{\mathrm{I}}^{(n)}(t, heta_1),
ho_{\mathrm{I}}^{(n)}(t, heta_2)] = \left|eta_n(t)\sin\left(rac{ heta_1- heta_2}{2}
ight)
ight|.$$

A pair of pure states in System I with antipodal initial Bloch vectors,  $\rho_{I}^{(n)}(0,\theta)$  and  $\rho_{I}^{(n)}(0,\theta+\pi)$ , maximizes the integrand  $dD[\rho_{I}^{(n)}(t,\theta),\rho_{I}^{(n)}(t,\theta+\pi)]/dt$  of  $\mathcal{N}$  at  $\forall t > 0$ .

$$\mathcal{N}=\int_{\Omega_+}dtrac{dD[
ho_{\mathrm{I}}^{(n)}(t, heta),
ho_{\mathrm{I}}^{(n)}(t, heta+\pi)]}{dt}=\int_{\Omega_+}dtrac{d|eta_n(t)|}{dt}.$$

#### 3.1 NMR Setup

• Qubit = Spin-1/2 nucleus.



- TMS molecule: System I (<sup>29</sup>Si nucleus) and System II (n = 12 H nuclei). The star-shaped TMS has the common J.
- Oxygen molecules in the solvent (acetone-d6) act as the magnetic impurities producing finite γ: Environment.
- The Zeeman energy  $\omega_0^{(0)}\sigma_z^{(0)}/2 + \omega_0^{(1)}\sum_{i=1}^n \omega_z^{(i)}/2$  can be eliminated by employing the rotating frame.
- γ<sub>I</sub> is measured first by "decoupling" System II spins.

#### 3.2 NMR Hamiltonian

• The Hamiltonian of the TMS molecule is

$$H = J \sum_{i=1}^{12} \frac{\sigma_z^{(0)} \cdot \sigma_z^{(i)}}{4} + \omega_1 \sum_{i=1}^{12} \frac{\sigma_x^{(i)}}{2}.$$

when the external RF field is in resonance with the Larmor frequency of the System II spins.  $J = 2\pi \times 6.6$  rad s<sup>-1</sup>.

- $\omega_1$  is a static parameter proportional to the applied RF field strength.
- The Hamiltonian physically implements our theoretical model with n = 12.
- Non-Markovianity is controllable by adjusting  $\omega_1$ .
- Measured values of  $\gamma$ 's are  $(\gamma_{I}, \gamma_{II}) = (0.41, 0.20)$  rad s<sup>-1</sup>.

#### 3.3 FID Signals

Set ρ<sub>I</sub> = |+⟩⟨+| at t = 0 and measure M<sub>x</sub>(t) :∝ Tr(ρ<sub>I</sub>(t)σ<sub>x</sub>). The signal decays as time goes (Free Induction Decay).

#### ۲

$$\operatorname{Tr}(
ho_{\mathrm{I}}(t)\sigma_{\mathrm{x}})=rac{1}{2}\operatorname{Tr}\left(egin{array}{cc} 1η_{n}(t)\ eta_{n}(t)&1\end{array}
ight)\left(egin{array}{cc} 0&1\ 1&0\end{array}
ight)=eta_{n}(t)=e^{-\gamma_{\mathrm{I}}t/2}b_{0}(t)^{n}.$$

- When  $\omega_1$  is very large, System II spins precess rapidly, which averages out the coupling J (decoupling). System I spin polarization decays as  $\propto e^{-i\gamma_1 t/2}$  in this limit and relaxation is Markovian.
- When  $\omega_1 = 0$ , in contrast, we have non-Markovian limit.
- Let us look at experimental data keeping the above observation in our mind.



- Red/black curves are real/imaginary parts of normalized FIDs.
- Blue curves in experiment are obtained by moving averaging.
- Dotted curve in top left shows  $e^{-\gamma_{\rm I} t/2}$ .
- Green curve with spatial inhomogeneity  $f(\omega_1) = \frac{1}{\sqrt{2\pi\sigma}} \exp\left(-\frac{(\omega_1 \omega_c)^2}{2\sigma^2}\right)$ . 21/26

#### 3.4 Non-Markovianity

$$\mathcal{N}:=\max_{
ho(0),
ho'(0)}\int_{\Omega_+}rac{d}{dt}D[
ho(t),
ho'(t)]dt.$$



#### 3.4 Non-Markovianity

- Why dip and peak instead of monotonic decrease?
- Note that  $\omega_1$  does not directly control N. It controls N by modulating the effective coupling strength between Systems I and II.
- There are two time scales  $2\pi/J$  and  $2\pi/\omega_1$ . They compete each other when  $\omega_1/2\pi \sim J/2\pi \sim 6.6$ .
- When ω<sub>1</sub> is small, the oscillation center of β<sub>1</sub>(t) gradually shifts up as ω<sub>1</sub> increases, which makes contribution of β<sub>12</sub> ~ β<sub>1</sub><sup>12</sup> to N less and less as ω<sub>1</sub> increases.



- When β<sub>1</sub> is lifted up totally above 0, n = 12 enhances non-Markovianity since the power amplifies the derivative → the dip.
- $\mathcal{N}$  gradually decreases as  $\omega_1$  increases since the oscillation gradually disappears.

#### 3.4 Non-Markovianity



Theory curve: Spatial inhomogeneity of  $\omega_1$  taken into account. Qualitative agreement with  $N_{exp}$ . No fitting parameters in theory!

## 4. Summary and Outlook

- We proposed a theoretical model that interpolates between Markovian relaxation and non-Markovian relaxation.
- The total system is made of System I (principal system), System II (a part of environment interacting with System I) and environment.
- Interaction between Systems I and II is controllable by adjusting the external field applied to System II, by which the relaxation changes from Markovian to non-Markovian.
- Non-Markovianity is measured by  $\mathcal{N}$ .
- We implemented the theoretical model faithfully with NMR. FID signals and N show qualitative/quantitative agreement between theory and experiment.
- $\mathcal{N}(\omega_1)$  shows a peculiar behavior, which can be explained by analyzing FID signals.
- Is it possible to replace n spin-1/2 nuclei by a big spin? The Majorana representation is a technique to visualize a higher dimensional complex vector in terms of multiple Bloch vectors. How about (Majorana representation)<sup>-1</sup>?
- Is there any practical application of our work?

Thank you very much for your attention. 謝謝