

Certifying quantum randomness with low latency

Yanbao Zhang NTT Research Center for Theoretical Quantum Physics NTT Basic Research Lab, Japan Feb. 19, 2021

Experimental realization

Hsin-Pin Lo

Takuya Ikuta

Toshimori Honjo

njo Hiroki Takesue

Theoretical model, security analysis & randomness extraction

Alan Mink

William J. Munro

Outline of the talk

• Introduction to randomness

• Our scheme for quantum randomness generation

• Our method for certifying quantum randomness

• Experimental realization & results

Background: Why randomness is important?

➢ Random numbers are generated through a process or device called the random number generator (RNG).

Huge amount of uniform randomness

High-quality, certified, private randomness

Simulation

Sampling

Gambling

Cryptography

Background: Why randomness is important?

➢ Random numbers are generated through a process or device called the random number generator (RNG).

Huge amount of uniform randomness

High-quality, certified, private randomness

Simulation

Sampling

Gambling

Cryptography

Classical process is deterministic **>** No perfect random numbers Quantum measure is probabilistic **>** Ideal random numbers as needed

' TI LI TI

A classical

Background: Quantum random number generators

Main idea: exploits the probabilistic nature of quantum measurements to generate genuine random numbers.

Background: Quantum random number generators

Main idea: exploits the probabilistic nature of quantum measurements to generate genuine random numbers.

Depending on the amount of characterization on the quantum devices:

- Device-dependent QRNG
- Semi-device-(in)dependent QRNG
- Device-independent QRNG

Background: Quantum random number generators

Device-dependent QRNG

- ✓ simple --- a small device
- high performance --- randomness rate
 ~250 Kbps (embedded in a smartphone)

Device-independent QRNG

Loophole-free Bell-test setup @ NIST-Boulder

- high security --- no need to characterize the device
- complicated --- a large-scale device
- high latency (time consuming) --- a few minutes or hours delay before generating randomness
- Iow performance --- randomness rate ~100 bps

Background: Semi-device-independent QRNG ONT

- Semi-device-independent --- the device is partially characterized.
- > Advantage --- can achieve a balance between **performance** and **security**.

Background: Semi-device-independent QRNG ONT

- Semi-device-independent --- the device is partially characterized.
- > Advantage --- can achieve a balance between **performance** and **security**.

Current problems: reliability and latency

- Questions:
- □ Increase reliability: can we address imperfections in both source & measure?
- Reduce latency: can we achieve low-latency randomness generation?

Overview of our achievements

An

Studied a new semi-device-independent QRNG scheme

In practice,

- a single-photon source is not easily accessible. •
- a particular quantum state is hard to prepare. •
- a particular measurement is hard to perform.

Overview of our achievements

Studied a new semi-device-independent QRNG scheme

Both Source and Measure are partially characterized.

> Developed *efficient* methods for randomness certification in the above scenario

Realized a simple low-latency real-time high-security QRNG

A simple QRNG scheme

A simple QRNG scheme with imperfections

A simple QRNG scheme with imperfections

A simple QRNG scheme with imperfections

- Guessing probability: $P_{guess}(\mathbf{C}|\mathbf{Z}\mathbf{E})_{\rho}$
- Easily accessible measure of uniform randomness: $H_{\min}(\mathbf{C}|\mathbf{Z}E)_{\rho} = -\log_2[P_{guess}(\mathbf{C}|\mathbf{Z}E)_{\rho}]$
- Flexible measure of uniform randomness:

 $H_{\min}^{\varepsilon}(\mathbf{C}|\mathbf{Z}\mathbf{E})_{\rho} = \sup_{\rho'} \{H_{\min}(\mathbf{C}|\mathbf{Z}\mathbf{E})_{\rho'}, P(\rho, \rho') \le \varepsilon\}$

R. König, R. Renner, and C. Schaffner, IEEE Trans. Inf. Theory 55, 4337 (2009)

M. Tomamichel, R. Colbeck, and R. Renner, IEEE Trans. Inf. Theory 56, 4674 (2010) Copyright 2020 NTT CORPORATION

- Guessing probability: $P_{guess}(\mathbf{C}|\mathbf{Z}\mathbf{E})_{\rho}$
- Easily accessible measure of uniform randomness: $H_{\min}(\mathbf{C}|\mathbf{Z}E)_{\rho} = -\log_2[P_{guess}(\mathbf{C}|\mathbf{Z}E)_{\rho}]$
- Flexible measure of uniform randomness:

 $H_{\min}^{\varepsilon}(\mathbf{C}|\mathbf{Z}\mathbf{E})_{\rho} = \sup_{\rho'} \{H_{\min}(\mathbf{C}|\mathbf{Z}\mathbf{E})_{\rho'}, P(\rho, \rho') \le \varepsilon\}$

Goal: Lower-bound smooth conditional min-entropy $H_{\min}^{\varepsilon}(\mathbf{C}|\mathbf{Z}\mathbf{E})$

- Guessing probability: $P_{guess}(C|ZE)_{\mu}$
- Easily accessible measure of uniform randomness: $H_{\min}(\mathbf{C}|\mathbf{Z}E)_{\mu} = -\log_2[P_{guess}(\mathbf{C}|\mathbf{Z}E)_{\mu}]$
- Flexible measure of uniform randomness:

 $H_{\min}^{\varepsilon}(\mathbf{C}|\mathbf{Z}\mathbf{E})_{\mu} = \sup_{\mu'} \{H_{\min}(\mathbf{C}|\mathbf{Z}\mathbf{E})_{\mu'}, TV(\mu, \mu') \le \varepsilon\}$

Goal: Lower-bound smooth conditional min-entropy $H_{\min}^{\varepsilon}(\mathbf{C}|\mathbf{Z}\mathbf{E})$

Our method: Concepts involved

(in the general approach of quantum probability estimation)

- ➢ Quantum model Q(CZ) --- the set of all possible joint states ρ_{CZE} at the end of the experiment.
- ➢ Quantum estimation factor (QEF) --- a function F_q(CZ) satisfying a set of constraints imposed by each possible $\rho_{CZE} \in Q(CZ)$.

Y. Z., H. Fu, and E. Knill, Phys. Rev. Research 2, 013016 (2020)Y. Z., L. K. Shalm *et al.*, Phys. Rev. Lett. 124, 010505 (2020)

Our method: Concepts involved

(in the general approach of quantum probability estimation)

- ➢ Quantum model 𝔅(CZ) --- the set of all possible joint states ρ_{CZE} at the end of the experiment.
- ➢ Quantum estimation factor (QEF) --- a function F_q(CZ) satisfying a set of constraints imposed by each possible $\rho_{CZE} \in Q(CZ)$.

Under the quantum Markov-chain conditions (natural for time-ordered trials)

 $C_{<i}$ ↔ $(Z_{<i}, E)$ ↔ $Z_i, \forall i$, [IID assumption is not required]

we need only to construct

- Model $\mathbf{Q}(CZ)$ --- the set of all possible joint states ρ_{CZE} at the end of a trial.
- Corresponding QEF --- a function $F_q(CZ)$ satisfying a set of constraints imposed by each possible $\rho_{CZE} \in \mathbf{Q}(CZ)$.

Y. Z., H. Fu, and E. Knill, Phys. Rev. Research 2, 013016 (2020)

Y. Z., L. K. Shalm *et al.*, Phys. Rev. Lett. 124, 010505 (2020)

Our method: Concepts involved

(in the general approach of probability estimation)

- Classical model $\boldsymbol{e}(\mathbf{CZ})$ --- the set of all possible joint states $\mu_{\mathbf{CZE}}$ at the end of the experiment.
- ➢ Probability estimation factor (PEF) --- a function F_c(CZ) satisfying a set of constraints imposed by each possible $\mu_{CZE} \in \mathcal{C}(CZ)$.

Under the Markov-chain conditions (natural for time-ordered trials)

 $C_{<i}$ ↔ $(Z_{<i}, E)$ ↔ $Z_i, \forall i$, [IID assumption is not required]

we need only to construct

- Model $\boldsymbol{e}(CZ)$ --- the set of all possible joint states μ_{CZE} at the end of a trial.
- Corresponding PEF --- a function $F_c(CZ)$ satisfying a set of constraints imposed by each possible $\mu_{CZE} \in \boldsymbol{\mathcal{C}}(CZ)$.

Y. Z., E. Knill, and P. Bierhorst, Phys. Rev. A 98, 040304(R) (2018)

E. Knill, Y. Z., and P. Bierhorst, Phys. Rev. Research 2, 033465 (2020)

Our method: Main theorem

(of quantum probability estimation)

• Quantum model \mathbf{Q}_i ($C_i Z_i$) and QEF $F_{q,i}(C_i Z_i) \ge 0$ with power $\beta_q > 0$ for each trial *i*.

QEF Def.
$$\forall \rho_{C_i Z_i E} \in \mathbf{Q}_i (C_i Z_i), \left\langle F_{q,i}(C_i Z_i) \widehat{R}_{1+\beta_q}(\rho_E(C_i Z_i) | \rho_E(Z_i)) \right\rangle \leq 1.$$

* Models and QEFs for different trials can be different.

* $\hat{R}_{1+\beta_q}(\rho_E(C_iZ_i)|\rho_E(Z_i))$ is the sandwiched Rényi power of order $(1+\beta_q)$.

Our method: Main theorem

(of quantum probability estimation)

• Quantum model \mathbf{Q}_i ($C_i Z_i$) and QEF $F_{q,i}(C_i Z_i) \ge 0$ with power $\beta_q > 0$ for each trial *i*.

QEF Def.
$$\forall \rho_{C_i Z_i E} \in \mathbf{Q}_i (C_i Z_i), \left\langle F_{q,i}(C_i Z_i) \widehat{R}_{1+\beta_q}(\rho_E(C_i Z_i) | \rho_E(Z_i)) \right\rangle \le 1.$$

* Models and QEFs for different trials can be different.

* $\hat{R}_{1+\beta_q}(\rho_E(C_iZ_i)|\rho_E(Z_i))$ is the sandwiched Rényi power of order $(1+\beta_q)$.

- The success event $\Phi \triangleq \{ \mathbf{cz} : \prod_{i=1}^{N} F_{q,i}(c_i z_i) \ge t_{\min} \}.$
- κ --- a desired lower bound of the success probability.

Theorem: For each possible state ρ_{CZE} , *either* the success probability satisfies $\operatorname{Prob}_{\rho_{CZE}}(\Phi) \leq \kappa$,

or conditional on success

$$H_{\min}^{\varepsilon}(\mathbf{C}|\mathbf{Z}\mathbf{E})_{\rho_{\mathbf{C}\mathbf{Z}\mathbf{E}}|\Phi} \geq \frac{1}{\beta_{q}}\log(t_{\min}) + \frac{1}{\beta_{q}}\log\left(\frac{\varepsilon^{2}}{2}\right) + \frac{1+\beta_{q}}{\beta_{q}}\log(\kappa).$$

Our method: Main theorem (of probability estimation)

• Classical model \boldsymbol{e}_i ($C_i Z_i$) and PEF $F_{c,i}(C_i Z_i) \ge 0$ with power $\beta_c > 0$ for each trial *i*.

PEF Def. $\forall \mu_{C_i Z_i E} \in \boldsymbol{\ell}_i (C_i Z_i), \langle F_{c,i}(C_i Z_i) [\mu_E(C_i | Z_i)]^{\beta_c} \rangle \leq 1.$

* Models and PEFs for different trials can be different.

- The success event $\Phi \triangleq \{ \mathbf{cz} : \prod_{i=1}^{N} F_{\mathbf{c},i}(c_i z_i) \ge t_{\min} \}.$
- κ --- a desired lower bound of the success probability.

Theorem: For each possible state μ_{CZE} , *either* the success probability satisfies $\operatorname{Prob}_{\mu_{CZE}}(\Phi) \leq \kappa$,

or conditional on success

$$H_{\min}^{\varepsilon}(\mathbf{C}|\mathbf{Z}\mathbf{E})_{\mu_{\mathbf{C}\mathbf{Z}\mathbf{E}}|\Phi} \geq \frac{1}{\beta_{\mathrm{c}}}\log(t_{\min}) + \frac{1}{\beta_{\mathrm{c}}}\log(\varepsilon) + \frac{1+\beta_{\mathrm{c}}}{\beta_{\mathrm{c}}}\log(\kappa).$$

Our method: for the scenario considered

Measurements considered:

$$M_{X} = \begin{pmatrix} M_{X, n=1} & 0 \\ 0 & M_{X, n\neq 1} \end{pmatrix}, \quad M_{Z} = \begin{pmatrix} M_{Z, n=1} & 0 \\ 0 & M_{Z, n\neq 1} \end{pmatrix}, \quad 1. \quad M_{X, n\neq 1} \text{ and } M_{Z, n\neq 1} \text{ are arbitrary}$$

$$M_{X, n\neq 1} = \begin{pmatrix} M_{X, n\neq 1} & 0 \\ 0 & M_{Z, n\neq 1} \end{pmatrix}, \quad 2. \quad M_{X, n=1} \text{ and } M_{Z, n=1} \text{ are qubit}$$

$$M_{X, n=1} = \begin{pmatrix} M_{X, n\neq 1} & 0 \\ 0 & M_{X, n\neq 1} \end{pmatrix}, \quad M_{X, n\neq 1} = \begin{pmatrix} M_{X, n\neq 1} & 0 \\ 0 & M_{X, n\neq 1} \end{pmatrix}, \quad M_{X, n\neq 1} = \begin{pmatrix} M_{X, n\neq 1} & 0 \\ 0 & M_{X, n\neq 1} \end{pmatrix}, \quad M_{X, n\neq 1} = \begin{pmatrix} M_{X, n\neq 1} & 0 \\ 0 & M_{X, n\neq 1} \end{pmatrix}, \quad M_{X, n\neq 1} = \begin{pmatrix} M_{X, n\neq 1} & 0 \\ 0 & M_{X, n\neq 1} \end{pmatrix}, \quad M_{X, n\neq 1} = \begin{pmatrix} M_{X, n\neq 1} & 0 \\ 0 & M_{X, n\neq 1} \end{pmatrix}, \quad M_{X, n\neq 1} = \begin{pmatrix} M_{X, n\neq 1} & 0 \\ 0 & M_{X, n\neq 1} \end{pmatrix}, \quad M_{X, n\neq 1} = \begin{pmatrix} M_{X, n\neq 1} & 0 \\ 0 & M_{X, n\neq 1} \end{pmatrix}, \quad M_{X, n\neq 1} = \begin{pmatrix} M_{X, n\neq 1} & 0 \\ 0 & M_{X, n\neq 1} \end{pmatrix}, \quad M_{X, n\neq 1} = \begin{pmatrix} M_{X, n\neq 1} & 0 \\ 0 & M_{X, n\neq 1} \end{pmatrix}, \quad M_{X, n\neq 1} = \begin{pmatrix} M_{X, n\neq 1} & 0 \\ 0 & M_{X, n\neq 1} \end{pmatrix}, \quad M_{X, n\neq 1} = \begin{pmatrix} M_{X, n\neq 1} & 0 \\ 0 & M_{X, n\neq 1} \end{pmatrix}, \quad M_{X, n\neq 1} = \begin{pmatrix} M_{X, n\neq 1} & 0 \\ 0 & M_{X, n\neq 1} \end{pmatrix}, \quad M_{X, n\neq 1} = \begin{pmatrix} M_{X, n\neq 1} & 0 \\ 0 & M_{X, n\neq 1} \end{pmatrix}, \quad M_{X, n\neq 1} = \begin{pmatrix} M_{X, n\neq 1} & 0 \\ 0 & M_{X, n\neq 1} \end{pmatrix}, \quad M_{X, n\neq 1} = \begin{pmatrix} M_{X, n\neq 1} & 0 \\ 0 & M_{X, n\neq 1} \end{pmatrix}, \quad M_{X, n\neq 1} = \begin{pmatrix} M_{X, n\neq 1} & 0 \\ 0 & M_{X, n\neq 1} \end{pmatrix}, \quad M_{X, n\neq 1} = \begin{pmatrix} M_{X, n\neq 1} & 0 \\ 0 & M_{X, n\neq 1} \end{pmatrix}, \quad M_{X, n\neq 1} = \begin{pmatrix} M_{X, n\neq 1} & 0 \\ 0 & M_{X, n\neq 1} \end{pmatrix}, \quad M_{X, n\neq 1} = \begin{pmatrix} M_{X, n\neq 1} & 0 \\ 0 & M_{X, n\neq 1} \end{pmatrix}, \quad M_{X, n\neq 1} = \begin{pmatrix} M_{X, n\neq 1} & 0 \\ 0 & M_{X, n\neq 1} \end{pmatrix}, \quad M_{X, n\neq 1} = \begin{pmatrix} M_{X, n\neq 1} & 0 \\ 0 & M_{X, n\neq 1} \end{pmatrix}, \quad M_{X, n\neq 1} = \begin{pmatrix} M_{X, n\neq 1} & 0 \\ 0 & M_{X, n\neq 1} \end{pmatrix}, \quad M_{X, n\neq 1} = \begin{pmatrix} M_{X, n\neq 1} & 0 \\ 0 & M_{X, n\neq 1} \end{pmatrix}, \quad M_{X, n\neq 1} = \begin{pmatrix} M_{X, n\neq 1} & 0 \\ 0 & M_{X, n\neq 1} \end{pmatrix}, \quad M_{X, n\neq 1} = \begin{pmatrix} M_{X, n\neq 1} & 0 \\ 0 & M_{X, n\neq 1} \end{pmatrix}, \quad M_{X, n\neq 1} = \begin{pmatrix} M_{X, n\neq 1} & 0 \\ 0 & M_{X, n\neq 1} \end{pmatrix}, \quad M_{X, n\neq 1} = \begin{pmatrix} M_{X, n\neq 1} & 0 \\ 0 & M_{X, n\neq 1} \end{pmatrix}, \quad M_{X, n\neq 1} = \begin{pmatrix} M_{X, n\neq 1} & 0 \\ 0 & M_{X, n\neq 1} \end{pmatrix}, \quad M_{X, n\neq 1} = \begin{pmatrix} M_{X, n\neq 1} & 0 \\ 0 & M_{X, n\neq 1} \end{pmatrix}, \quad M_{X, n\neq 1} = \begin{pmatrix} M_{X, n\neq 1} & 0 \\ 0 & M_{X, n\neq 1} \end{pmatrix}, \quad M_{X, n\neq 1} = \begin{pmatrix} M_{X, n\neq 1} & 0 \\ 0 & M_{X, n\neq 1} \end{pmatrix}$$

3. M_X and M_Z are randomly selected with bounded probabilities.

States considered:
$$\rho = \begin{pmatrix} \rho_{n=1} & 0 \\ 0 & \rho_{n\neq 1} \end{pmatrix}$$
, where $\operatorname{Tr}(\rho_{n=1}) \ge p_{1,\text{lb}}$.

Our method: for the scenario considered

Measurements considered:

$$M_{X} = \begin{pmatrix} M_{X,n=1} & 0 \\ 0 & M_{X,n\neq1} \end{pmatrix}, \quad M_{z} = \begin{pmatrix} M_{z,n=1} & 0 \\ 0 & M_{z,n\neq1} \end{pmatrix}, \quad \begin{array}{c} 1. & M_{X,n\neq1} \text{ and } M_{z,n\neq1} \text{ are arbitrary} \\ 2. & M_{X,n=1} \text{ and } M_{z,n=1} \text{ are qubit} \\ \text{measurements with } |\delta| \leq \Delta. \end{array}$$
3. M_{X} and M_{z} are randomly selected with bounded probabilities.
States considered: $\rho = \begin{pmatrix} \rho_{n=1} & 0 \\ 0 & \rho_{n\neq1} \end{pmatrix}, \text{ where } \operatorname{Tr}(\rho_{n=1}) \geq p_{1,\text{lb}}.$
Physical model
Construct the best QEF and PEF
by convex optimization
Quantum model
Quantum model Q
& classical model Q

197

Our QRNG: Experimental realization

- A laser pulse is inputted into a Mach–Zehnder interferometer (MZI), and outputs are detected by two superconducting single-photon detectors (SSPDs).
- Two orthogonal measurement bases: energy basis & time basis.
 - 1. Energy basis: random (0: click at SSPD1, or 1: click at SSPD2)
 - 2. Time basis: t1 (almost) t3 (rare event)
- Advantage --- easily integrated onto a chip.
- > Our QRNG is semi-device-independent --- allows imperfections in both source & measure.

Our QRNG: Experimental realization

Our QRNG allows:

- Imperfect source --- weak optical pulse rather than single-photon source.
- Imperfect basis choice --- a basis is selected with an inexact probability.
- Imperfect measure --- measurements are misaligned.

Result 1: Low-latency real-time high-security QRNG

➤ Each instance generates 8192 (or 2 × 8192) random bits against quantum (or classical) adversary with insecurity $2^{-64} \approx 5.4 \times 10^{-20}$ → high security.

Insecurity --- Adversary's ability to distinguish the generated random bits (real case) from the perfectly random bits (ideal case).

Each instance takes 0.1 s runtime (which includes the latency 0.047 s) + 0.02 s (or 0.04 s) extraction time
real time & low latency.

Result 2: Trade-off between quantity & quality

- O NTT
- Depending on the specific application, we choose the insecurity level beforehand. E.g.,

Simulation requires low security --- recommended insecurity level 10^{-5} .

Cryptography requires high security --- recommended insecurity level 10^{-20} .

Expected number of random bits certifiable from the measurement outcomes observed in every 0.1 s runtime.

Result 3: Classical vs Quantum adversary

Simulation: Binary-outcome measurements such that $\langle M_1 \rangle = 0$ and $\langle M_2 \rangle = 1 - d$.

Ideal case: 1-qubit + two mutually unbiased measurements Practical case: 95% 1-qubit + two misaligned measurements (misalignment angle is 5°)

Clear demonstration of the reduction of the rate w.r.t. quantum adversaries as compared to that w.r.t. classical adversaries.

Comparison with other start-of-art works

100

	QRNG Type	Latency	Rate (over a long run)	Insecurity	
ID Quantique PRX, 2014 arXiv:2011.14129	device dependent	unreported	4.90 Mbps** (the best QRNG chip)	uncertified	Fig. 3 of USTC, Nature 2018
USTC Nature, 2018	device independent	13 hours	181 bps	10^{-5} quantum adversary	
NIST PRL, 2020	device independent	5 min	55 bps	$5.4 imes 10^{-20}$ quantum adversary	
Tsinghua Uvi. PRX 2016	semi device independent	unreported	5 Kbps	$1.8 imes 10^{-15}$ quantum adversary	
Our work	semi device independent	47 ms	153 Kbps	$5.4 imes 10^{-20}$ quantum adversary	

* Latency and Rate are two *different* measures of QRNG performance.

- * Previous works focus on the study of the rate of a QRNG; however, the latency is more relevant for practical applications.
- ** The rate 250 Kbps in the video presentation is the typical entropy rate of the smallest QRNG chip embedded in a smartphone.

Copyright 2020 NTT CORPORATION

Significance of this work and future developments

Summary

- Simple & reliable QRNG scheme even with imperfections in both source and measure.
- New & efficient method for randomness certification, which is extendable to QKD.
- Low-latency real-time high-security QRNG.
- Advantage of quantum adversary.

Outlook

- Reduce the size of our QRNG → Integration into mobile phones.
- Build a continuously-operating, high-security and high-speed quantum randomness beacon [ongoing efforts at NIST@USA and USTC@China].

Significance of this work and future developments

Summary

- Simple & reliable QRNG scheme even with imperfections in both source and measure.
- New & efficient method for randomness certification, which is extendable to QKD.
- Low-latency real-time high-security QRNG.
- Advantage of quantum adversary.

Outlook

- Reduce the size of our QRNG → Integration into mobile phones.
- Build a continuously-operating, high-security and high-speed quantum randomness beacon [ongoing efforts at NIST@USA and USTC@China].

Thank you for your attention!