Black hole accretion

Feng Yuan (袁 峰)

Shanghai Astronomical Observatory Chinese Academy of Sciences

Outline

- Chapter 1: Introduction to some basic concepts of accretion and Review of accretion models
- Chapter 2: The standard thin disk and slim disk
- Chapter 3: Hot accretion flow: dynamics & radiation
- Chapter 4: Hot accretion flow: applications
 Chapter 5: Formation of outflow and jet
 Chapter 6: AGN interaction with ISM

Chapter 3: Hot accretion flow: dynamics and radition

3.1 One-dimensional dynamics

One-dimensional equations

$$\begin{aligned} \frac{d}{dR}(\rho R H v) &= 0, \\ v \frac{dv}{dR} - \Omega^2 R &= -\Omega_K^2 R - \frac{1}{\rho} \frac{d}{dR}(\rho c_s^2), \\ v \frac{d(\Omega R^2)}{dR} &= \frac{1}{\rho R H} \frac{d}{dR} \left(\nu \rho R^3 H \frac{d\Omega}{dR} \right) \\ \rho v \left(\frac{de}{dR} - \frac{p}{\rho^2} \frac{d\rho}{dR} \right) &= \rho \nu R^2 \left(\frac{d\Omega}{dR} \right)^2 - q^-, \end{aligned}$$
One-T:

Two-T:

$$\begin{split} q^{\text{adv},\text{i}} &\equiv \rho v \left(\frac{de_i}{dR} - \frac{p_i}{\rho^2} \frac{d\rho}{dR} \right) \equiv \rho v \frac{de_i}{dR} - q^{i,c} = (1-\delta)q^+ - q^{\text{ie}}, \\ q^{\text{adv},\text{e}} &\equiv \rho v \left(\frac{de_e}{dR} - \frac{p_e}{\rho^2} \frac{d\rho}{dR} \right) \equiv \rho v \frac{de_e}{dR} - q^{e,c} = \delta q^+ + q^{\text{ie}} - q^-. \end{split}$$

Self-similar solution

Narayan & Yi 1994;1995; Yuan, Bu & Wu (2012)

Assuming power-law scaling with radius for physical quantities:

$$\begin{split} v \simeq -1.1 \times 10^{10} \; \alpha r^{-1/2} & \mathrm{cm} \; \mathrm{s}^{-1}, \\ \Omega \simeq 2.9 \times 10^4 \; m^{-1} r^{-3/2} & \mathrm{s}, \\ c_s^2 \simeq 1.4 \times 10^{20} \; r^{-1} \; \mathrm{cm}^2 \; \mathrm{s}^{-2}, \\ n_e \simeq 6.3 \times 10^{19} \; \alpha^{-1} \; m^{-1} \dot{m} \; r^{-3/2} \; \mathrm{cm}^{-3}, \\ B \simeq 7.8 \times 10^8 \; \alpha^{-1/2} \; m^{-1/2} \dot{m}^{1/2} \; r^{-5/4} \; \mathrm{G}, \\ p \simeq 1.7 \times 10^{16} \; \alpha^{-1} \; m^{-1} \dot{m} \; r^{-5/2} \; \mathrm{g} \; \mathrm{cm}^{-1} \; \mathrm{s}^{-2} \\ q^+ \simeq 5.0 \times 10^{21} \; m^{-2} \dot{m} \; r^{-4} \; \mathrm{ergs} \; \mathrm{cm}^{-3} \; \mathrm{s}^{-1}, \\ \tau_{\mathrm{es}} \simeq 24 \; \alpha^{-1} \dot{m} \; r^{-1/2}, \end{split}$$

Main features

Large radial velocity:

$$v_r \sim \frac{\alpha c_s H}{R}$$

- Sub-Keplerian rotation: pressure-gradient support
- High temperature: $T \sim \frac{GMm_p}{6kR} \sim \frac{10^{12}}{r}$ (virial, why?)
- Geometrically thick: $(H = \frac{c_s}{\Omega_k} \sim R)$
- Optically thin (because of large radial velocity)
- Two-temperature: $T_i \gg T_e$
 - coupling between ions and electrons not strong enough
 - plasma collective behavior also too weak

Radiative efficiency is low when *M* is small

outflow

The energy equation of the accretion flow:

$$\rho \upsilon T \frac{ds}{dr} \equiv q_{adv} = q^+ - q^-$$

For the standard thin disk, we have,

$$q^+ \approx q^- >> q_{adv}$$

• For ADAFs, we have,

$$q^+ \approx q_{adv} >> q^-$$

physics:

- the density of the accretion flow is very low so: radiation timescale >> accretion timescale.
- So most of the viscously dissipated energy is stored in the accretion flow and advected in to the black hole rather than radiated away.

The critical accretion rate of ADAF

What will happen when $\dot{M} > \dot{M}_{crit,ADAF}$?

Extension of ADAF to higher M: LHAFs

Yuan 2001, MNRAS

The energy equation of accretion flow:

So we have:

$$\rho \upsilon \frac{d\varepsilon_i}{dr} = q^+ + q^c - q_{ie}$$

So there exists another critical rate $\dot{M}_{crit,LHAF}$, determined by: $q^+ + q^c = q_{ie} \rightarrow \dot{M}_{crit,LHAF} \sim 0.6 \ \alpha \dot{M}_{Edd}$ Below $\dot{M}_{crit,LHAF}$, the solution is called LHAF, in which advection is a heating term

Global Solutions of hot accretion flow

Yuan 2001

• $\alpha = 0.3;$ $M_{BH} = 10M_{\bullet}$

Accretion rates are: 0.05(solid; ADAF); 0.1 (dotted; critical ADAF); 0.3 (dashed; type-I LHAF) 0.5 (long-dashed; type-II LHAF)

Global Solutions: Energetics

Accretion rates are: 0.05(solid; ADAF); 0.1 (dotted; critical ADAF); 0.3 (dashed; type-I LHAF) 0.5 (long-dashed; type-II LHAF)

Radiative efficiency of ADAF & LHAF Xie & Yuan 2012

3.2 Radiation

Radiative processes

Synchrotron emission:

- relativistic electrons & B field (described by a parameter _B);
- Maxwell distribution
- Self-absorption of synchrotron emission
- Bremsstrahlung radiation
- Comptonization
 - seed photons are synchrotron & Brem. photons
- Misc:
 - Gamma-ray emission by the decay of neutral pions created in proton-proton collisions

Emitted Spectrum

Supermassive BH

20

Stellar-mass BH

3.3 Stability

The thermal equilibrium curve of accretion solutions: local analysis

 Following the usual approach, we adopt the following two assumptions

$$\Omega = \Omega_k \qquad Q_{adv} = \frac{M}{2\pi R^2} \frac{P}{\rho} \xi$$

 solving the algebraic accretion equations, setting ξ to be positive and negative to obtain different accretion solutions.

Yuan & Narayan 2014

Viscous stability

 All three solutions are viscously stable since their positive slopes.

Convective stability

Without B field (academic case): unstable entropy increases inward Convective instability drives winds With B field (more realistic case): stable (Yuan, Bu & Wu 2012; Narayan et al. 2012) This is because MRI changes the dynamics of hot accretion flow (Stone, Pringle 2001; Hawley & balbus 2002)

Thermal stability

- Stable for long-wavelength perturbation since the slope is positive
- Short-wavelength perturbation: debate
 - Stable (Wu & Li 1996; Wu 1997)
 - Unstable (Manmoto et al, 1996; Kato et al. 1996, 1997; Yuan 2003)

3.4 Numerical simulations

HD & MHD simulations: overview

The mass accretion rate decreases inward

- The radial profiles of physical quantities are described by a power-law, consistent with the self-similar solution.
- Values of parameters:

 $\alpha \sim 0.05 - 0.2; \alpha \beta \sim 0.5$

(α is actually quite diverse, depend on shearing box or global, net flux, resolution et al.)

MHD simulation: initial condition

MHD simulation: movie

Snapshot of GRMHD simulation

Yuan & Narayan 2014; courtesy of A. Tchekhovskoy

B field configuration and strength in three regions:1. Main disk body:2. Corona3. jet

Snapshot of GRMHD simulation

Yuan & Narayan 2014; courtesy of A. Tchekhovskoy