

The Spin Rates of Black Holes

John Tomsick Space Sciences Laboratory/UC Berkeley September 2018

Outline

- Black hole X-ray binaries
- Measuring BH spin with X-rays
 - X-ray timing method
 - Thermal method
 - Reflection method
 - The Nuclear Spectroscopic Telescope Array (NuSTAR)
- Measuring BH spin with Gravitational Waves
 - LIGO/Virgo detections of BH-BH mergers
- Comparison and Discussion

Black hole binaries over time and in space

- Steady increase in the number of known BH transients in our Galaxy
 - Currently 60
- Mostly at low
 Galactic latitude with a couple exceptions
 - XTE J1118+480 is about 1.7 kpc away

3

Dynamically confirmed black holes

- 21 compact objects in binaries with masses >3 M_{sun}
- Orbital period range:
 - 4 hours to 34 days
- Figure indicates:
 - size of orbit
 - companion temperature and size
 - inclination

Long-term soft X-ray light curves

- Very large range of activity
- Many systems with zero outbursts in 16 years
 - e.g., V404 Cyg
- Some persistent systems
 - e.g., Cyg X-1
- Some systems with long-term outbursts

e.g.,
 Swift J1753.5-0127

Full mission (16 year, 1995-2012) RXTE/ASM light curves

Long-term soft X-ray light curves

- Very large range of activity
- Many systems with zero outbursts in 16 years
 - e.g., V404 Cyg
- Some persistent systems
 - e.g., Cyg X-1
- Some systems with long-term outbursts

e.g.,
 Swift J1753.5-0127

Full mission (16 year, 1995-2012) RXTE/ASM light curves

6

Changes in Energy Spectra (spectral states)

 Sudden transitions during an outburst from XTE J1752-223

3-79 keV *NuSTAR* spectra (King+14; Fuerst+15)

- Soft state: ~1 keV thermal plus power-law
- Hard state: Γ ~ 1.4-1.8 power-law

A Recent Example

- New: MAXI J1820+070
 - Very bright source
 - >100 day hard state

- 3-79 keV NuSTAR spectra
 - Hard state: Γ ~ 1.4-1.8 power-law
 - Soft state: ~1 keV thermal plus power-law

BH spin definitions and radii

- Characterized by:
 - Mass: M
 - Spin: a_{*} = Jc/GM²
 (Charge: Q=0 assumed)
- -1<a∗<1</p>

(solutions for R_H are imaginary outside this range)

 R_{ISCO} depends strongly on a_{*}

- R_{ISCO} = innermost stable circular orbit
- R_H = event horizon

(in units of R_g = gravitational radius = GM/c²)

Why measure BH spin?

- How are relativistic jets powered and launched?
- To probe the strong gravity in the inner disk
- What do BH spins tell us about their formation and evolution?

HMXBs accrete for <10⁷ years

- Even at ~10⁻⁷ M_{sun}/year, the spin does not change very much
- BHs in HMXBs are likely born with their current spin

LMXBs have lifetimes of $\sim 10^9$ years, but there is not enough mass to significantly change the spin unless the BH mass starts off being very low

Measuring BH spin for BH binaries

- All three X-ray methods for measuring a_{*} rely on constraining the inner radius of the accretion disk (R_{in})
- If R_{in}<6R_g, we immediately constrain a∗ since R_{ISCO} ≤ R_{in}

X-ray Timing: High Frequency Quasi-Periodic Oscillations (QPOs)

450 Hz signal seen by RXTE

Modeling spectra to constrain BH spin: Thermal

- Measuring a_{*} by modeling the thermal component
 - Free parameters are R_{in} (a_{*}) and dM/dt
- Concept is simple, but you need to know:
 - M_{BH}
 - Source distance
 - Inner disk inclination

Modeling the LMC X-3 thermal component (Davis+06; Steiner+10; Steiner +14 McClintock+14)

Stability of R_{in}

- For LMC X-3, R_{in} stayed in a very narrow range while the source luminosity varied by a large factor
- Suggests that R_{in} reached R_{ISCO}
- $M_{BH} = 7.0 \pm 0.6 M_{sun}$ gives:
 - $R_{in} = 5.2^{+1.0}_{-0.7} R_g$
 - a∗ = 0.25^{+0.20}-0.29
 - Steiner+14

LMC X-3 luminosity and R_{in} , *assuming* a BH mass of 10 M_{sun} (Steiner+10)

Emission components (direct and reflected)

- Direct components
 - Thermal blackbody emission from the disk
 - High energy component from the "corona"
- Reflection signatures include:
 - Iron emission line (fluorescence from disk material)
 - Iron absorption edge (absorption in disk material)
 - Compton hump (scattering off disk material)

Using reflection to measure BH spin

- Model reflection component to measure R_{in} and constrain or measure a_{*}
- Critical region of the spectrum a few to ~50 keV

The Nuclear Spectroscopic Telescope Array

- Harrison+13
- Hard X-ray optics
- 10 meter deployable mast
- CdZnTe detectors

Energy Range:	3-79 keV	
Angular Resolution:	58 arcsec (HPD) 18 arcsec (FWHM)	
Sensitivity (3σ, I Ms):	2 x 10 ⁻¹⁵ erg/cm ² /s (6-10 keV) 1 x 10 ⁻¹⁴ erg/cm ² /s (10-30 keV)	
Field of View:	12 x 12 arcmin	
Spectral Resolution:	400 eV at 6 keV 900 eV at 60 keV	
Effective Area:	900 cm ² at 9 keV 100 cm ² at 60 keV	
Throughput	~400 events/s/module (limited by deadtime but there is no pileup)	

Reflection measurements with NuSTAR

Residuals to a power-law continuum model

Cyg X-1

- Binary parameters from Orosz+11
 - *P*_{orb} = 5.6 days
 - $M_{BH} = 14.8 \pm 1.0 M_{sun}$
 - $M_{opt} = 19.2 \pm 1.9 M_{sun} (HMXB)$
 - $i = 27.1^{\circ} \pm 0.8^{\circ}$
- Parallax distance measurements
 - d = 1.86^{+0.12}_{-0.11} kpc (Reid+11)
 - d = 2.37 ± 0.18 kpc (Gaia2)
- Bright with strong X-ray emission since its discovery in the 1960s

Cyg X-1 light curves and spectra

Energy (keV)

Cyg X-1 spectra: model-independent look

- Dip at 6.7 keV due to absorption by stellar wind
- All profiles show red wing due to gravitational redshift

Applying reflection model to Cyg X-1 soft state spectra: BH spin and inclination constraints

- 0.93 < a_∗ < 0.96</p>
- 37° < i < 42°
 - Inner disk inclination

Walton et al. 2016

Warped disk?

- From three NuSTAR studies
 - i > 40° (Tomsick+2014)
 - i = 45.3°±0.4° (Parker+2015)
 - 37°<i<42° (Walton+2016)
- These are significantly higher than the measured binary inclination (27.1°±0.8°)
- Possible misalignment between the BH spin axis and the orbital angular momentum vector

• Warped disk calculation

by Schandl & Meyer (1994)

• See also King & Nixon (2016)

Cyg X-1 thermal method

- a₊>0.983
 - i = 27.1° (binary)
 - Gou, McClintock, Remillard, et al. 2014
- a_∗ ~ 0.96
 - i = 40° (Walton+16)
- With the higher inclination, the thermal agrees better with the reflection (0.93-0.96)

BH spin with NuSTAR reflection measurements

Source Name	Spin Parameter	Reference
GRS 1915+105	0.98 ± 0.01	Miller et al. 2013
4U 1630-47	0.985 ^{+0.005} -0.014	King et al. 2014
GX 339-4	0.95 ^{+0.02} -0.08	Parker et al. 2016
Cyg X-1	0.93-0.96	Walton et al. 2016
GS 1354-645	>0.98	El-Batal et al. 2016
V404 Cyg	>0.98 (if i>50°)	Walton et al. 2016
GRS 1739-278	0.8 ± 0.2	Miller et al. 2015
MAXI J1535-571	>0.84	Xu et al. 2018
Swift J1658.2-4242	>0.96	Xu et al. 2018

BH spin for X-ray binaries

- Spins for 26 systems
- Good agreement between methods in most cases
- Mostly (but not exclusively) high spin

References:

- Miller & Miller 2015
- Middleton 2016
- NuSTAR refs

Gravitational wave measurements

- GW 150914
- Merger of 36 and 29 M_{sun} BHs
- Wow!

Abbott+16

Gravitational wave measurements - masses

- Six BH-BH mergers reported during LIGO O1 and O2 runs
- Are X-ray binaries the main progenitors of BH-BHs?

BH-BH formation: X-ray binary scenario

- This scenario can include
 2 high-mass X-ray binary (HMXB) phases
- BH/Wolf-Rayet binaries
 - IC10 X-1
 - NGC 300 X-1
 - Cyg X-3 (BH?)
 - Candidates
 - CG X-1 (Esposito+15)
 - NGC 253 (Hornschemeier+18)

Mandel & Farmer (2018) See also Belczynski+16

BH-BH formation: Capture scenario

- Likely BHs in GCs
 - NGC 4472 (Maccarone+07)
 - 47 Tuc (Miller-Jones+15)
 - M22 (Strader+12)
 - M62 (Chomiuk+13)
- BH-BH merger predictions vs. actual
 - O1: 0.2-2 vs. 3 detections
 - O2: 3-45 vs. 3 detections
 - Rodriguez+16a

<u>www.britannica.com</u> (generic globular cluster)

BH spins and X-ray binary vs. capture scenarios

- X-ray binary predictions
 - High spins ———
 - Expect tendency to align with L
- Capture prediction
 - Isotropic spin directions

Effective spins from LIGO GW detections

- $\chi_{eff} = (M_1 a_1 \cos\theta_1 + M_2 a_2 \cos\theta_2) / (M_1 + M_2)$
- $\theta_{1,2}$ = angles between **L** and **S**_{1,2}

χ_{eff} Comparison: BH-BH and X-ray binaries

- To compare, calculate possible \chi_eff distribution from Xray binary (XRB) a* values
- For the aligned case,
 χ_{eff,XRB} >> χ_{eff,BH-BH}
- Also, looked at two other cases:
 - $\theta_1 = \theta_2 = 45 \text{ deg}$
 - Isotropic θ's (not expected for XRBs)

Cumulative χ_{eff} distribution for:

- the actual BH-BH measurements and
- Values calculated by combining random pairs of X-ray binary spins

BH spin distribution – take away

- Looking like there is not a great match between the spins of BHs in X-ray binaries and BH-BHs
- Possible reasons
 - BH-BHs may be *mostly* from captures
 - XRBs may produce BH-BHs with misaligned spins (see, e.g., Piran & Hotekezaka 2018)
 - Selection effects?
 - Systematics?

Selection effects/systematics

- Selection effects for BH-BHs
 - Higher mass BHs may form with lower spin (Belczynski+17)
- Selection effects for X-ray binaries
 - Higher spin leads to stronger reflection
- Systematics for X-ray binaries
 - Reflection models depend on input physics
 - Thermal method depends on inner disk inclination

Spin of BH after LIGO mergers

- Measured values as expected if M₁~M₂
- Final spin from orbital angular momentum

BH spin techniques and future possibilities

- X-ray timing and HFQPOs
 - Need a mission like RXTE but larger
- Thermal technique
 - Need more sources with known distances, BH masses, and inner disk inclinations (nearby galaxies?)
- Reflection
 - Need to continue to improve the models
- Gravitational waves
 - Expecting more BH-BHs; looking forward to the first BH-NS
- X-ray polarization is another possibility