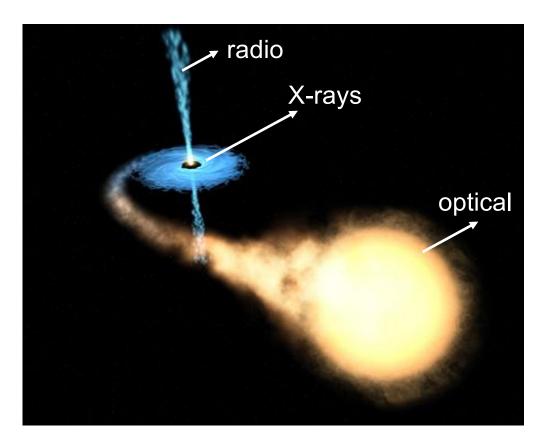


Observational Aspects of Accreting Black Holes: Overview

John Tomsick
Space Sciences Laboratory/UC Berkeley
September 2018



X-ray satellite missions that I've used

Mission Name	Dates	Energy Range
RXTE	1995-2012	2-60 keV (PCA)
Chandra	1999-now	0.3-10 keV
XMM-Newton	1999-now	0.3-12 keV
INTEGRAL	2002-now	15-400 keV (IBIS)
Swift	2004-now	0.5-10 keV (XRT)
Suzaku	2005-2015	0.5-300 keV
NuSTAR	2012-now	3-79 keV

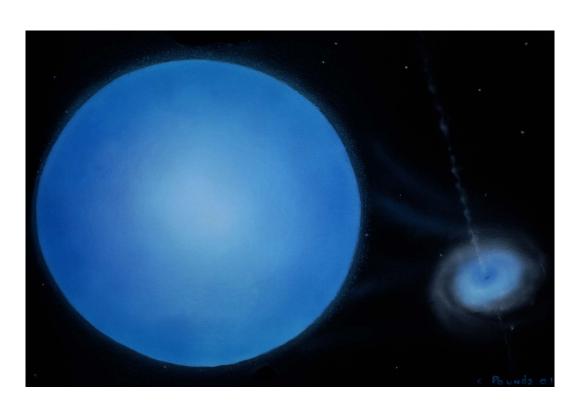
• We also need to observe at other wavelengths (radio, optical, etc.) to get the complete picture.

Low-mass X-ray binaries (LMXBs)

Companion: Optical dominates Inner Disk: X-rays dominate Outer Jet: Radio dominates

Companion star

 Always produces a low level of optical emission

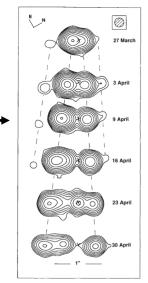

Accretion disk

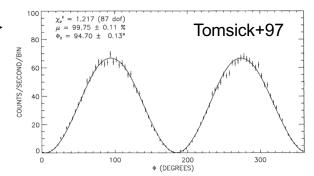
- Emits from infrared to optical to X-rays
- For transients, X-rays can vary from 10³⁰ to 10³⁹ erg/s

Jet

- Emits in the radio, infrared, and optical
- The base of the jet may also emit in the X-rays

High-mass X-ray binaries (HMXBs)


- HMXBs with black hole accretors are fairly rare
- Cyg X-1 is the best-studied example in the Milky Way Galaxy


- Companion star
 - Dominates in the optical
- Accretion disk
 - X-ray luminosity typically 10³⁷ erg/s for Cyg X-1
- Jet
 - Same as LMXBs

Observational tools

- Light curves (source intensity vs. time)
- Energy spectra (source intensity vs. energy)
- Power spectra (variability amplitude vs. frequency)
 - Basic tool of X-ray timing
- Imaging (binary separations are too small, <10-4 arcsec)
 - Can see jets in the radio bandpass (radio interferometry)
 - There are a few examples of X-ray jets (Chandra, 10"-30")
- Astrometry (positions of sources)
 - Parallax distance measurements
 - Orbital motion detection rare but becoming possible
- Polarization (modulation curve) ————
 - Modulation curves used for X-rays and gamma-rays
 - Other techniques used for optical and radio

Shows radio images at 6 different times (Mirabel & Rodriguez 1994)

Topics to be discussed

- The Spin Rates of Black Holes
 - X-ray energy spectra (mostly NuSTAR)
 - Gravitational waves (LIGO and Virgo for BH-BH mergers)
- Multiwavelength Observations
 - Especially optical and radio
- High-Energy Polarization Measurements
 - Past (OSO-8), Present (INTEGRAL, COSI, PoGO+), and Prospects for the Future (IXPE)
- X-ray Timing
 - RXTE, AstroSat, NICER, STROBE-X