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§1    Inverse-Compton 
Scatterings

From Rybicki & Lightman (1979),

“Radiative Processes in Astrophysics”



§1 Inverse-Compton Scatterings

Emission processes can be interpreted as the Compton 

scatterings of real or virtual photons. Thus, let us begin by 

considering its classical limit, Thomson scatterings,

A free e- oscillates in 

the E field to radiate

(by dipole formula)

.

For unpolarized radiation field, the differential cross 

becomes
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§1 Inverse-Compton Scatterings

The total cross section becomes the Thomson cross section,

Note that the scattering

can also occur if the

incident photon is a 

virtual photon (§3).

For unpolarized radiation field, the differential cross 

becomes

 
2 2

20
0 2

1 cos  , where 
2 e

rd e
r

d m c


  



1
2 2 2

T 0 0
1

8
2 (1 )

3

d
d r d r

d

 
   


    

 



§1 Inverse-Compton Scatterings

If incident photon energy 

becomes comparable or 

greater than mec
2, quantum 

effects appear in two ways:

● recoil of e-,

● reduction of cross section.

Consider the scattering of a photon off an electron in the 

electron rest frame.

Energy and momentum conservation gives
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§1 Inverse-Compton Scatterings

QED gives the differential 

cross section for 

unpolarized radiation, 

the Klein-Nishina formula,

,

where
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§1 Inverse-Compton Scatterings

Integrating d/d over the solid angle, we obtain the total 

cross section

where .

Cross section

reduces due to

quantum effects.
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§1 Inverse-Compton Scatterings

Consider in the 

observer’s frame. 

The Doppler shift 

formula gives

.

If elastic (e*f ≈e*i) in the

e--rest frame, we obtain
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§1 Inverse-Compton Scatterings

Consider in the 

observer’s frame. 

The Doppler shift 

formula gives

.

If elastic (e*f ≈e*i) in the

e--rest frame, we obtain
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For example, if e i =100 eV

and  =103, 

e i*~e f*~0.1 MeV

e f ~100 MeV



§1 Inverse-Compton Scatterings

For isotropic distribution of photons, an e- emits the 

inverse-Compton radiation at a rate [ergs s-1],

,

where Uph denotes the energy density of the photons. 

cUph : incident photon flux [erg s-1 cm-2]

TcUph: collision rate [erg s-1]

 2 : energy amplification factor by a single IC.
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§1 Inverse-Compton Scatterings

For isotropic distribution of photons, an e- emits the 

inverse-Compton radiation at a rate [ergs s-1],

,

where Uph denotes the energy density of the photons. 

The factor 4/3 comes from the angle average of

,

which comes from the Lorentz transformation,

.
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§2 Radiation from 
Relativistic Charges

From Rybicki & Lightman (1979),

“Radiative Processes in Astrophysics”



§2   Radiation from Relativistic Charges

Consider a charge q moving along a world line, r’=r0(t’) .

It produces an electro-magnetic field at point (r,t) , if it is 

causality connected to the particle’s motion.

t ’=tret

0(t') /dt'du r



§2   Radiation from Relativistic Charges

Maxwell eq. gives the 

Lienard-Wiechart (scalar) potential,

.

,

where [ ] denotes time t’ is 

evaluated at retarded time, tret ,

,
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§2 Radiation from Relativistic Charges

The vector potential, A(r,t), is given in the same way,

.

Thus, a moving charge produces an EM field,
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§2 Radiation from Relativistic Charges

Noting

,

we find that the Evel dominates in the near zone, R<l, 

while the Eacc dominates in the far zone, R»l. 

The velocity field does not carry energy to large distances, 

while the radiation field does.

 
tr t ree

2

3 2

'

vel

3

'

acc

( )

           

(
(

) )
)

(
,

1

t t t t

q

c R
t q

R




 

 


  
 
 

 



 



 
 

n β

E

n
r β β

E

E n

2

vel rad

rad

2 2

vel

1/ ,   1/

   ( )

E R E R

E Ru Ru u R
u u

E c c c




l

 

( / 4 ) S E B



§2 Radiation from Relativistic Charges

Usually, we use Eacc to compute the emission spectrum, 

by Fourier analyzing the time-dependent E field.

However, we can derive the same results using Evel by 

introducing the virtual quanta. 

For example, the synchrotron radiation can be interpreted 

as the inverse Compton scatterings of virtual photons in 

an external B field. 

We thus consider such an explanation in what follows.
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§2 Radiation from Relativistic Charges

Consider e--ion Bremsstrahlung (free-free emission).

In the e- rest frame, relativistic ion produces a pulse of Evel

in the near zone, R<l,
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§2 Radiation from Relativistic Charges

Because of this pulsed

Evel , e- oscillates to radiate 

by the dipole formula.

That is, a virtual photon, 

which does not carry 

energy to infinity, is 

up-scattered to become

a real photon.

= Relativistic bremsstrahlung

Thomson scattering

velocity field

Electron rest frame



§2 Radiation from Relativistic Charges

Because of this pulsed

Evel , e- oscillates to radiate 

by the dipole formula.

That is, a virtual photon, 

which does not carry 

energy to infinity, is 

up-scattered to become

a real photon.

The same idea can be applied when a charge is moving in 

an external magnetic field.

→ Synchrotron radiation

= Relativistic bremsstrahlung

Thomson scattering



§3    Synchrotron Radiation

From Rybicki & Lightman (1979),

“Radiative Processes in Astrophysics”



§3 Synchrotron Radiation

If an e- is moving in a

B field, a time-varying

Evel field arises in 

the e--rest frame.

Then, the e- oscillates to emit 

synchrotron photons.

The virtual photon has an energy, 

Thus, the up-scattered photon

has an energy .

Thomson scattering
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§3 Synchrotron Radiation

A detailed argument shows an additional factor, 3/2, arises; 

thus, the synchrotron characteristic energy becomes

where the gyro radius is defined by .

Since , synchrotron 

photons have the typical energy,  
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§3 Synchrotron Radiation

The synchrotron radiation power can be estimated by

,

where .

For an isotropic distribution of , a detailed argument 

shows

.

Reminding , we find .
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§3 Synchrotron Radiation

The trans-field motion is quantized with discrete energy 

values, called Landau levels,

n: radial quantum number

m: magnetic quantum number

The ground state has the “zero-point” energy, .

After falling onto the ground state, an e- no longer emits 

synchrotron photons.
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§4    Synchro-curvature 
Radiation



§4 Synchro-curvature Radiation

The longitudinal motion (along B) is not quantized, 

allowing continuous P||.

After the particle falls onto the ground Landau state,

only the longitudinal motion contributes to an emission.

If the macroscopic particle motion follows a curved 

trajectory with curvature radius Rc, it emits the 

pure curvature radiation with characteristic energy,

cf.

(synchrotron case)
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§4 Synchro-curvature Radiation

The longitudinal motion (along B) is not quantized, 

allowing continuous P||.

After the particle falls onto the ground Landau state,

only the longitudinal motion contributes to an emission.

If the macroscopic particle motion follows a curved 

trajectory with curvature radius Rc, it emits the 

pure curvature radiation:
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§4 Synchro-curvature Radiation

If the particle has not fallen onto the ground Landau state,

but moves along a curved trajectory with curvature radius 

Rc, it emits the synchro-curvature radiation.

(Cheng & Zhang 1996, ApJ 463, 271-283)

In  →0 , it reduces to the pure curvature process.

In Rc→∞, it reduces to the pure synchrotron process.

General expression of SC radiation is complicated. 

Thus, we consider typical e- motion in a pulsar 

magnetosphere and show how it deviates from the pure 

curvature process when both B and  are large.



§4 Synchro-curvature Radiation

If B>107G and  >10-6, synchro-curvature process deviates 

from the pure curvature process

KH 2006, 

ApJ 652, 1475-93



§5 Electron-positron Pair 
Production



§5 Electron-positron Pair Production

If two photons collide with 

angle c, e
--e+ pair may be 

produced.  The total cross 

section of →ee becomes

Note that →ee takes place only when the threshold is 

satisfied,
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§5 Electron-positron Pair Production

When a photon propagates in a 

B field, it may be absorbed to 

materialize as a pair. 

The photon mean-free path 

to B→ee becomes 
(Erber 1966, Rev. mod. Phys. 38, 626)

2

1

2 3
13

8
600 exp  cm ,

3 sin
sin

where   4.413 10 G

cr e
B

c
c

e

e
cr

B m cc

eB B E

m c

m c
B

e

l


 
  

 

  

Magnetic pair production



END OF CHAPTER 2


