Gamma radiation from rapidly rotating black holes

Chapter 1 Chapter 2 Chapter 3 Chapter 4 Chapter 5 Chapter 6 Chapter 7 Chapter 8

Quick review of gamma-ray observations Basic emission mechanisms The pulsar outer gap model The black hole gap model The BH gap model: general argument BH gap emission from galactic X-ray binaries Gap emission from BHs moving in molecular cl. Gap emission from super-massive BHs in AGNs

> September 7, 2018 HIROTANI, Kouichi

NCTS Summer School on Astrophysics 2018Accretion and Emission of Accreting Black Holes

*§*1 Why gamma-rays?

Why high-energy (HE; 10 MeV-10GeV) & very-high-energy (VHE; 10GeV-100TeV) gamma-rays?

Interpreting γ -rays should be less ambiguous compared to reprocessed, lower-energy photons.

Thus, HE and VHE γ -rays are important as direct signatures of non-thermal plasma processes.

 \rightarrow Explore nature's accelerators.

Chapter 1

Quick review of γ-ray observations

- §1 High-energy (HE) γ-rays
- §2 Very-high-energy (VHE) γ-rays

September 7, 2012 NCTS, NTHU HIROTANI, Kouichi

The Large Area Telescope (LAT) is the principal instrument on the *Fermi* Gamma-ray Space Telescope, which was launched on June 11, 2008.

http://www-glast.stanford.edu/mission.html

The Large Area Telescope (LAT) is the principal instrument on the *Fermi* Gamma-ray Space Telescope, which was launched on June 11, 2008.

LAT is an imaging HE gamma-ray telescope.

Energy range: 20 MeV - 300 GeV.

Such γ -rays can be emitted only by ultra-relativistic particles.

Energy range: 20 MeV - 300 GeV.

Field of view: ~2.5 ster (entire sky covered every 3 hrs.)

Angular resolution:

The point spread function has a 68% containment radius of about 3° at 100 MeV and 0.04° at 100 GeV.

Effective area: ~7000 cm² at 1 GeV, decreasing at lower and higher energy.

The Fermi LAT instrument

A γ -ray passes through the anticoincidence detector. It proceeds until it interacts with an atom in a tungsten foil to materialize as an e^{\pm} pair.

http://www-glast.stanford.edu/instrument.html

The Fermi LAT instrument

The pairs create ions in silicon strip detectors, allowing the progress of the particles to be tracked. Finally the particles are stopped by a calorimeter.

http://www-glast.stanford.edu/instrument.html

The Fermi LAT instrument

The information from the anticoincidence detector, tracker and calorimeter is combined to estimate the energy and direction of the gamma ray.

http://www-glast.stanford.edu/instrument.html

Fermi/LAT sky map above 10 GeV

https://svs.gsfc.nasa.gov/11342

Fermi detected sources:

Rotation-powered pulsars:	216
Active galactic nuclei (AGNs):	66
Supernova remnants (SNRs):	12
Pulsar wind nebulae (PWNe):	9
Binaries:	4
Normal galaxies:	2
Star-forming region (SFR):	1

LAT online catalog https://fermi.gsfc.nasa.gov/ssc/data/access/lat/

Pulsars	Young, radio-selected:	55
	Young, gamma-selected:	57
	Young, X-ray selected:	5
	MSP, radio-selected:	96
	MSP, gamma-selected:	3
	· · · · · · · · · · · · · · · · · · ·	216 (total)

A	GN	JS

BL Lac type of blazers:18FSRQ type of blazers:38Radio galaxies:3Blazer candidates:5Narrow-line Seyfert 1:266 (total)

Fermi/LAT highlights (from extra-galactic to galactic)

Gamma-ray bursts

Compact mergers (NS-NS,NS-BH) Collapsers (rapidly spinning stellar core collapses w/ jets)

Active galactic nuclei

Blazers (HBL, FSRQ), and other types of active galaxies

Fermi bubble (of the Milky Way galaxy)

Pulsars

Rotation-powered young pulsars ($\tau = 10^{3-6}$ yrs) Rotation-powered MSPs Transitional MSPs (accreting/non-accreting states)

Imaging Atmospheric Cherenkov Telescopes (IACTs)

High Energy Stereoscopic System (H.E.S.S)
Four 12-m & one 28-m diameter telescopes.
Operational: Summer 2002 – present
Located in Nambia.
Sensitive in 100GeV-10TeV

Imaging Atmospheric Cherenkov Telescopes (IACTs)

Major Atmospheric Gamma Imaging Cherenkov (MAGIC) Two 17-m telescopes. Operational: 2004 – present Located in La Palma, Canary islands, Spain. Sensitive in 30GeV-100TeV

Imaging Atmospheric Cherenkov Telescopes (IACTs)

Very Energetic Radiation Imaging Telescope Array System (VERITAS)

Four 12-m diameter telescopes. Operational: 2007 – present Located in Arizona, USA. Sensitive in 50GeV-50TeV

Sensitivity of IACTs and other missions

http://umdgrb.umd.edu/hawc/science.php

Cherenkov Telescope Array (CTA)

>100 telescopes.

Operational: near future

Located in La Palma & Chili (i.e., N/S hemispheres). Sensitive in 20GeV-300TeV

VHE sky map above 100 GeV w/ H.E.S.S., MAGIC & VERITAS

http://tevcat.uchicago.edu/

H.E.S.S., MAGIC & VERITAS have detected 219 sources. 157 of them have been identified with other wavelengths.

IACTs highlights (Here, limited to BH-related issues only)

Blazers (largest population in TeV sky) Mrk 501, PKS 2155-304 $\Delta t_{var} = 3 \sim 5 min$ cf. $G(10^9 M_{\odot})/c^3 = 83 min$.

Flares from non-blazers

M87 $\Delta t_{var} \sim 1 \text{ day} \sim 2.7 \ GM/c^3 \ (M=6.4 \times 10^9 M_{\odot})$ \rightarrow Horizon-scale emission region Albert + (2008, ApJ 685, L23) IC 310 $\Delta t_{var} \sim 5 \min \sim 0.21 \ GM/c^3 \ (M=3 \times 10^8 M_{\odot})$ \rightarrow Sub-horizon-scale emission region Aleksic + (2014, Sci 346, 1080) \rightarrow Consider emission from the vicinity of a BH.

END OF CHAPTER 1