Chapter 5

The Black Hole Gap Emission: General argument

- §1 BH gaps for various BH masses
- §2 Poleward-enhanced emission at high BH spin

September 7, 2012 NCTS, NTHU HIROTANI, Kouichi

BH gap exists for various BH masses.

 E_{\parallel} and potential drop increase with decreasing \dot{m} .

Gap longitudinal width increases with decreasing \dot{m} .

Accretion rate / Eddington rate

Curvature process dominates IC process at smaller \dot{m} .

Gap electrodynamics is unchanged when M varies.

Accretion rate / Eddington rate

However, IC process dominates curvature one at all \dot{m} .

Accretion rate / Eddington rate

§ 2 Emission enhancement along the rotation axis as BH spins up

Let us start with the effect of poleward concentration of B.

As $a \rightarrow M$, **B** field lines laterally rearrange to concentrate toward the rotation axis.

2007, MNRAS 377, L49

Let us start with the effect of poleward concentration of B.

As $a \rightarrow M$, **B** field lines laterally rearrange to concentrate toward the rotation axis.

Because of this poleward concentration of B^r_{H} , BZ power ($\propto B_H^{r/2}$), and hence the gap emissivity increases toward the rotation axis.

Tchekhovskoy + 2010, ApJ 711, 50

 E_{\parallel} concentrates poleward when BH rotates extremely.

Both HE & VHE fluxes are detectable when a=0.9999M.

VHE flux is detectable w/ CTA for a=0.9900M.

Summary on BH gap model

When the mass accretion rate is highly sub-Eddington, the polar funnel becomes charge-starved. Gaps appear within a few GM/c^2 above the event horizon.

The gap emission concentrates toward the rotation axis as $a \rightarrow M$ (Song +, 2017, MNRAS 471, L135).

END OF CHAPTER 5