Chapter 6

Black Hole Gap Emission from Galactic X-ray Binaries

- §1 Observations of galactic XRBs
- §2 Gap emission from stellar-mass BHs
- §3 HE detectability of gap emission from XRBs

So far, 77 X-ray binary BHs and BHCs have found in MW & LMC.

BlackCAT (Corral-Santana + '16, AA 587, A61) WATCHDOG (Tetarenko + '16, ApJS 222, 15)

So far, 77 X-ray binary BHs and BHCs have found in MW & LMC.

BlackCAT (Corral-Santana + '16, AA 587, A61) WATCHDOG (Tetarenko + '16, ApJS 222, 15)

In these BH X-ray binaries, material transfers from a companion star onto the BH primary.

- HMXBs 6 are fed by wind, 1 by Roche-lobe overflow Companion: O-B stars $(M>10M_{\odot})$
- **LMXBs** 45 are fed by Roche-lobe overflow. Companion: K-M (M< M_{\odot}) or B-F (M \sim M_{\odot})

(Companion nature of other 25 BHXBs are unknown.)

The mass <u>accretion rate</u> \dot{M} near the compact object determines their emission properties.

6 BH-HMXBs and 4 BH-LMXBs have $\dot{M} > 10^{-8} M_{\odot} yr^{-1}$, showing persistent X-ray emission with $L_X \sim L_{Edd}$. Tanaka & Shibazaki 1996, ARA&A 34, 607

47 BH-LMXBs have much lower long-term accretion rate, $\dot{M} < 10^{-9} M_{\odot} yr^{-1}$, showing transient X-ray emission: Sporadic outbursts after long-time quiescence.

Tanaka & Lewin 1995, in X-ray binaries, p. 126

Outburst recurrence period ranges 10⁰⁻² yrs. WATCHDOT, BlackCAT

For transient BH binaries, HE & VHE emissions are expected in the shock-in-jet model.

Marscher & Gear 1985, ApJ 298, 114

HE/VHE flux increases w/ increasing \dot{M} .

However, HE/VHE emissions can be alternatively emitted from BH gaps in transient BHBs. KH & Pu 2016, ApJ 818, 50; KH + 2016, ApJ 833, 142

HE/VHE flux increases w/ decreasing \dot{M} .

We will focus on the BH-gap model and discuss its theoretical predictions.

§2 Gap emission from stellar-mass BHs

 $M=10M_{\odot}, B=B_{eq}; \text{ SEDs } @ \text{ six discrete } \dot{m} (along \theta=0^{\circ})$

 $M=10M_{\odot}, B=B_{eq}; \text{ SEDs } @ \text{ six discrete } \dot{m} (along \theta=0^{\circ})$

 $M=10M_{\odot}, B=B_{eq}$; SEDs @ six discrete m^{\bullet} (along $\theta = 45^{\circ}$)

 $M=10M_{\odot}, B=B_{eq}$; SEDs @ six discrete m^{\bullet} (along $\theta = 45^{\circ}$)

 $M=10M_{\odot}, B=B_{eq}$; SEDs @ 3 discrete \vec{m} (along $\theta = 0^{\circ}$)

§ 3 Detectability of the gap emission from individual XRBs in HE γ-rays

Next, examine BH transients. The Blandford-Znajek flux, $F_{\rm BZ}=L_{\rm BZ}/4\pi d^2$, gives the maximum possible flux @ Earth.

Four greatest F_{BZ} BHTs (descending order):

Name	mass	distance	obs. <i>M</i>	Comments*
	M_{\odot}	kpc	${\dot M}_{ m Edd}$	
1A 0620-00	6.60	1.06	2.08×10^{-3}	L, T, V616 Mon
4U 1956+350	14.81	1.86		H, P, Cyg X-1
XTE J1118+480	7.30	1.72	4.96×10^{-4}	L, T, KV UMa
GS 2023+338	7.15	2.39	.017224	L, T, V404 Cyg

* Low-mass/High-mass companion, Transient/Persistent

We exclude Cyg X-1, because $M \gg 10^{-4} M_{Edd}$.

Although the observed \dot{m} exceeds 10⁻⁴ for all the 3 BHTs, there may be a certain fraction of time in which $5.7 \times 10^{-5} < \dot{m} \equiv \dot{M} / \dot{M}_{Edd} < 10^{-4}$ is satisfied.

Name	mass	distance	obs. M	Comments*
	M_{\odot}	kpc	$\dot{M}_{ m Edd}$	
1A 0620-00	6.60	1.06	2.08×10 ⁻³	L, T, V616 Mon
4U 1956+350	14.81	1.86		H, P, Cyg X-1
XTE J1118+480	7.30	1.72	4.96×10 ⁻⁴	L, T, KV UMa
GS 2023+338	7.15	2.39	.017224	L, T, V404 Cyg

* Low-mass/High-mass companion, Transient/Persistent

We thus examine these three BH LMXBs w/ greatest $F_{\rm BZ}$.

J0620-0020: LAT 7-yr averaged flux appears below the theoretical prediction.

J0620-0020: LAT 7-yr averaged flux appears below the theoretical prediction.

J1118+4802: LAT 7-yr averaged flux also appears below prediction.

V404 Cyg: LAT 7-yr averaged flux appear slightly below prediction.

Summary on BH gap model

If an X-ray binary located within 2 kpc, if the BH is extremely rotating, and if we view it pole-on, its gap emission will be detectable with Fermi/LAT, provided that the accretion rate is regulated in the range $6 \times 10^{-6} < M / M_{Edd} < 2 \times 10^{-5}$ for more than a month

(Lin + 2017, ApJ 845, 40).

In fact, we can discriminate gap vs. jet emissions by anti-correlation vs. correlations at near-IR & VHE for stellar-mass BH (KH+, 2016, ApJ 818, 50).

END OF CHAPTER 6