

В

 \mathbb{C}^d

Local Thermalization

Local operations + shared randomness Locally behaves as $(\cdot) \mapsto \gamma_A$ and $(\cdot) \mapsto \gamma_B$

Local Thermalization

Local operations + shared randomness Locally behaves as $(\cdot) \mapsto \gamma_{A}$ and $(\cdot) \mapsto \gamma_{B}$

Do entanglement preserving local thermalizations exist?

Any product local thermalization to (γ_A, γ_B) coincides with the channel $(\cdot) \mapsto \gamma_A \otimes \gamma_B$.

if the smallest eigenvalue among $\gamma_{\rm A}$ and $\gamma_{\rm B} > \frac{1}{d^2}$

if the smallest eigenvalue among $\gamma_{\rm A}$ and $\gamma_{\rm B}>\frac{1}{d^2}$

Share randomness suffices for entanglement preserving local thermalization.

Distance between channels & sets $\mathcal{D}(\mathcal{E};\mathcal{S}) \coloneqq \inf_{\Lambda \in \mathcal{S}} ||\mathcal{E} - \Lambda||_1$

$$\mathcal{D}(\mathcal{E};\mathcal{S}) \coloneqq \inf_{\Lambda \in \mathcal{S}} \|\mathcal{E} - \Lambda\|$$

Distance between channels & sets
$$\mathcal{D}(\mathcal{E};\mathcal{S}) \coloneqq \inf_{\Lambda \in \mathcal{S}} ||\mathcal{E} - \Lambda||_1$$

Entanglement preserving strength $\mathcal{D}(\mathcal{E};\mathcal{B})$, where \mathcal{B} is the set of channels on AB

Distance between channels & sets
$$\mathcal{D}(\mathcal{E};\mathcal{S}) \coloneqq \inf_{\Lambda \in \mathcal{S}} ||\mathcal{E} - \Lambda||_1$$

Entanglement preserving strength

 $\mathcal{D}(\mathcal{E};\mathcal{B})$, where \mathcal{B} is the set of channels on AB that destroy entanglement for any input

Distance between channels & sets
$$\mathcal{D}(\mathcal{E};\mathcal{S}) \coloneqq \inf_{\Lambda \in \mathcal{S}} ||\mathcal{E} - \Lambda||_1$$

Entanglement preserving strength

 $\mathcal{D}(\mathcal{E};\mathcal{B})$, where \mathcal{B} is the set of channels on AB that destroy entanglement for any input

Distance between channels & sets
$$\mathcal{D}(\mathcal{E};\mathcal{S}) \coloneqq \inf_{\Lambda \in \mathcal{S}} ||\mathcal{E} - \Lambda||_1$$

Entanglement preserving strength

 $\mathcal{D}(\mathcal{E};\mathcal{B})$, where \mathcal{B} is the set of channels on AB that destroy entanglement for any input

Distance between channels & sets $|\mathcal{D}(\mathcal{E};\mathcal{S}) \coloneqq \inf_{\Lambda \in \mathcal{S}} ||\mathcal{E} - \Lambda||_1$

$$\mathcal{D}(\mathcal{E};\mathcal{S}) \coloneqq \inf_{\Lambda \in \mathcal{S}} \|\mathcal{E} - \Lambda\|_{1}$$

Entanglement preserving strength

 $\mathcal{D}(\mathcal{E};\mathcal{B})$, where \mathcal{B} is the set of channels on AB that destroy entanglement for any input

For every $\delta>0$, there exists a $\tau_{\delta}>0$ such that for every $(\gamma_{\rm A},\gamma_{\rm B})$ with $\min_{\rm v}\tau_{\rm X}>\tau_{\delta}$, there exist two entanglement preserving local thermalizations \mathcal{E}_+ and \mathcal{E}_- such that

$$\mathcal{D}(\mathcal{E}_+; \mathcal{B}_{Bound}) \ge (3d - 1)P_{\min} - 2$$

$$\mathcal{D}(\mathcal{E}_{-};\mathcal{B}) < \delta \& \mathcal{E}_{-} \notin \mathcal{B}_{Bound}$$

 $\tau_{\rm X} \coloneqq kT_{\rm X}/({\rm Highest\ eigenenergy\ of\ the\ subsystem\ X}),\,{\rm X=A,B}.$

 P_{\min} is the smallest eigenvalue amount $\gamma_{\rm A}$ and $\gamma_{\rm B}$.

 \mathcal{B}_{Bound} is the set of channels that can only at most preserve bound entanglement.

Distance between channels & sets $|\mathcal{D}(\mathcal{E};\mathcal{S}) \coloneqq \inf_{\Lambda \in \mathcal{S}} ||\mathcal{E} - \Lambda||_1$

$$\mathcal{D}(\mathcal{E};\mathcal{S}) \coloneqq \inf_{\Lambda \in \mathcal{S}} \|\mathcal{E} - \Lambda\|_{2}$$

Entanglement preserving strength

 $\mathcal{D}(\mathcal{E};\mathcal{B})$, where \mathcal{B} is the set of channels on AB that destroy entanglement for any input

For every $\delta>0$, there exists a $\tau_{\delta}>0$ such that for every $(\gamma_{\rm A},\gamma_{\rm B})$ with $\min_{\rm v}\tau_{\rm X}>\tau_{\delta}$, there exist two entanglement preserving local thermalizations \mathcal{E}_+ and \mathcal{E}_- such that

$$\mathcal{D}(\mathcal{E}_+; \mathcal{B}_{\text{Bound}}) \ge (1 - \delta) \left(1 - \frac{1}{d}\right)$$

$$\mathcal{D}(\mathcal{E}_{-};\mathcal{B}) < \delta \& \mathcal{E}_{-} \notin \mathcal{B}_{Bound}$$

 $\tau_{\rm X} \coloneqq kT_{\rm X}/({\rm Highest\ eigenenergy\ of\ the\ subsystem\ X}),\,{\rm X=A,B}.$

 P_{\min} is the smallest eigenvalue amount $\gamma_{\rm A}$ and $\gamma_{\rm B}$.

 \mathcal{B}_{Bound} is the set of channels that can only at most preserve bound entanglement.

Result 4 | 2-qubits systems case & multipartite systems case

Result 4 | 2-qubits systems case & multipartite systems case

Positive partial transpose criterion enables better results.

A. Peres, Phys. Rev. Lett. 77, 1413 (1996); M. Horodecki, P. Horodecki, and R. Horodecki, Phys. Lett. A 223, 1 (1996).

Result 4 | 2-qubits systems case & multipartite systems case

Positive partial transpose criterion enables better results.

A. Peres, Phys. Rev. Lett. 77, 1413 (1996); M. Horodecki, P. Horodecki, and R. Horodecki, Phys. Lett. A 223, 1 (1996).

Multipartite entanglement preserving local thermalizations exist for nonzero local temperatures.

Genuinely multipartite entanglement such as that of the Greenberger-Horne-Zeilinger state can be preserved in some cases.

D. M. Greenberger, M. A. Horne, and A. Zeilinger, *Going Beyond Bells Theorem in Bells Theorem, Quantum Theory, and Conceptions of the Universe* (Kluwer Academic, Dordrecht) (1989); D. M. Greenberger, M. A. Horne, and A. Zeilinger, arXiv:0712.0921.

Conclusion & Outlook

Conclusion

Share randomness suffices for entanglement preserving local thermalization.

Conclusion

Share randomness suffices for entanglement preserving local thermalization.

Outlook

Conclusion

Share randomness suffices for entanglement preserving local thermalization.

Outlook

Realizing in particular physical systems, searching for a more specific dynamics, and understanding more properties.

Any possible application in quantum information & quantum computation.

Acknowledgements

This project is part of the ICFOstepstone - PhD Programme for Early-Stage Researchers in Photonics, funded by the Marie Skłodowska-Curie Co-funding of regional, national and international programmes (GA665884) of the European Commission, as well as by the 'Severo Ochoa 2016-2019' program at ICFO (SEV-2015-0522), funded by the Spanish Ministry of Economy, Industry, and Competitiveness (MINECO).

Acknowledgements

This project is part of the ICFOstepstone - PhD Programme for Early-Stage Researchers in Photonics, funded by the Marie Skłodowska-Curie Co-funding of regional, national and international programmes (GA665884) of the European Commission, as well as by the 'Severo Ochoa 2016-2019' program at ICFO (SEV-2015-0522), funded by the Spanish Ministry of Economy, Industry, and Competitiveness (MINECO).

Thank you for your attention and patience!