



# Regularizing data for practical randomness generation

Pei-Sheng Lin

Department of Physics, National Cheng Kung University

Boris Bourdouncle<sup>2</sup>, Denis Rosset<sup>1</sup>, Antonio Acín<sup>2</sup>, and Yeong-Cherng Liang<sup>1</sup>

<sup>1</sup>Department of Physics, National Cheng Kung University, Taiwan <sup>2</sup>Institut de Ciències Fotòniques, Spain



### What does "random" mean?

- Random numbers can be used in science, games and lottery...
- Randomness test:
  - ☐ Statistical randomness: whether "0" and "1" appears with equal chance
  - ☐ Algorithmic randomness: sequence producible using an algorithm?
- \*\* Predictability: how difficult is it for an all-powerful eavesdropper to guess?
- Hidden variables



## How to generate random numbers?



- Can we generate random numbers by flipping a fair coin?
  - Seems to be statistically random
  - March The results are deterministic
  - Initial conditions may be known
- How about performing measurements on a quantum system?
  - May not be statistically random

Pictures taken from:



## Is it really a quantum random number generator?



- Outputs from this device could be completely deterministic due to some "hidden variables"
- Bell's theorem:
  "No physical theory of local hidden variables can reproduce all predictions of quantum mechanics." (not even the probabilities)
- Randomness can be extracted from a device with "non-local" behaviors



#### How random can it be?



- $\clubsuit$  Bell inequalities  $\mathcal{B}$ : separate the two different sets
- How random are the behaviors of this device?
- Roughly speaking, the longer distance, the more random the device
- Our goal: determine a better Bell inequality to certify more randomness
- Device-independent randomness generation



## Our results

Comparing randomness from  $\mathcal{B}'$  and a fixed  $\mathcal{B}$ 







# Summary



- What does random mean? Unpredictability!
- How to generate random numbers? By quantum systems!
- Is it really a quantum random number generator? If it violates a Bell inequality!
- How random can it be? Captured roughly by the distance!

Our goal is to find out a better Bell inequality that certifies as much

randomness as possible

THANK YOU FOR YOUR LISTENING





## Device-independent methodologies













- Making no assumptions on the devices
- Local-hidden variable: deterministic  $\{P(a,b|x,y)\} = \{\sum P_{\lambda}P(a|x,\lambda)P(b|y,\lambda)\}$

$$\begin{bmatrix}
P(a=0|x=0) \\
P(a=1|x=0)
\end{bmatrix} = \begin{bmatrix}
0.50 & 51 \\
50 & 0
\end{bmatrix} + 0.5 \begin{bmatrix}
0 \\
1
\end{bmatrix}$$

Bell inequality:

$$\sum_{abxy} I_{abxy} P(a, b|x, y) \stackrel{\mathcal{L}}{\leq} C$$

\*\* Clauser-Horne-Shimony-Holt ineq.:

$$|\langle A_0 B_0 \rangle + \langle A_1 B_0 \rangle + \langle A_0 B_1 \rangle - \langle A_1 B_1 \rangle| \stackrel{\mathcal{L}}{\leq} 2$$



## Consider the worst case



|         | xy = 00 | xy = 10 | xy = 01 | xy = 11 |
|---------|---------|---------|---------|---------|
| ab = 00 | 0.083   | 0.167   | 0.167   | 0       |
| ab = 10 | 0.083   | 0       | 0.167   | 0.333   |
| ab = 01 | 0.083   | 0.167   | 0       | 0.333   |
| ab = 11 | 0.75    | 0.667   | 0.667   | 0.333   |

- What is the chance of guessing the outcome correctly?
  - Directly looking at the data is one way
  - Mixture of different strategies?
- The data is not available due to finite statistics
- Estimate the correlations from finite runs\*

