LHC phenomenology in light of R(D) and R(D*) anomalies

Teppei Kitahara Nagoya University

2110.xxxxx collaboration with M. Endo, S. Iguro, M. Takeuchi, R. Watanabe

International Joint Workshop on the SM and Beyond October 14, 2021, NTHU, online

High-energy vs. high-precision

Beyond the standard model (New Physics/NP) is, therefore, required

- The Standard Model (SM) is known to be an incomplete model that can not explain matter—
- antimatter asymmetry, dark matter, gauge hierarchy, quark mass hierarchy, neutrino mass, etc.

O(1) coupling

small coupling

SM O(1) coupling Cosmology Astrophysics **Precision** measurements small coupling

me

Excluded by leptoquark search from QCD production (for B anomaly)

SM O(1) coupling Cosmology Astrophysics **Precision** measurements small coupling

me

 \bullet Hadron spectroscopy, dark sector, etc

Three major B factories:

LHC phenomenology in light of R(D) and $R(D^*)$ anomalies Teppei Kitahara (Nagoya Univ.), International Joint Workshop on the SM and Beyond, October 14, 2021, NTHU, online

B physics

Rich phenomenology; CKM, FCNC, CP violation, tau lepton, Lepton-flavor universality (LFU),

BaBar experiment @ SLAC, physics run was finished at 2008 $e^+e^- \rightarrow \Upsilon \rightarrow B\bar{B} \quad 10^8 B\bar{B}$ per year

Belle and Belle II experiments @ KEK, Belle II started at 2019

- $e^+e^- \rightarrow \Upsilon \rightarrow B\bar{B}$ $10^{10}B\bar{B}$ per year
- LHCb experiment @ CERN, Run 2 were done, Run 3 will start at 2022 $pp \rightarrow b\bar{b} \rightarrow B\bar{B}$ $10^{12}b\bar{b}$ per year

CMS experiment will become B factory at Run 3 (called B-parking), Run 2 data [$10^{10} (b \rightarrow \mu X) \overline{b}$] will be shown near future [Takahashi, PPP2021]

Test of Lepton Flavor Universality (LFU)

- Gauge symmetry predicts lepton flavor universal phenomena e ν_e, e
- Charged lepton mass changes kinematics and modifies scalar form factors in the hadronization, which eventually violates the lepton flavor universality
- Long-distance QED correction (beyond PHOTOS MC simulation) could violate the lepton flavor universality [de Boer, TK, Nisandzic, PRL '18; Isidori, Nabeebaccus, Zwicky, '20]

LFU observables R(D) and R(D*)

 $\mathcal{B}(B \to D\ell\nu) = 2\%, \ \mathcal{B}(B \to D^*\ell\nu) = 5\%,$

[HFLAV 2019]

QED corrections could be missed at a few % level

Current plot: only included final-state radiations without the interference

[de Boer, TK, Nisandzic, PRL '18]

Latest SM predictions of R(D) and R(D*)

HFLAV theory average 2019

New analyses

٠

- + All lattice data, QCD sum rule, and the latest LCSR result [Gubernari, Kokulu, van Dyk '18] $@q^2 = q_{\max}^2$ $@q^2 < 0$
- + All $\mathcal{O}(\Lambda^2/m_c^2)$ corrections in the heavy quark effective theory in all form factors [Jung, Straub '18]
- [Bordone, Jung, van Dyk '19] + Momentum distributions from Belle data

 $R(D)_{\rm SM} = 0.297 \pm 0.003$

+ Angular distributions from Belle data [Iguro Watanabe '20]

 $R(D)_{\rm SM} = 0.289 \pm 0.004$

<i>R</i> (<i>D</i>): 1.4	[HFLAV
$R(D^*)$:	2.
combine:	3.

LHC phenomenology in light of R(D) and $R(D^*)$ anomalies

Teppei Kitahara (Nagoya Univ.), International Joint Workshop on the SM and Beyond, October 14, 2021, NTHU, online

 $R(D)_{\rm SM} = 0.299 \pm 0.003$ $R(D^*)_{\rm SM} = 0.258 \pm 0.005$

$$R(D^*)_{\rm SM} = 0.250 \pm 0.003$$
 [BJvD]

 $R(D^*)_{\rm SM} = 0.248 \pm 0.001$ [W]

 $(2019) \rightarrow 1.4 [BJvD], 1.7 \sigma [IW]$ 5 \rightarrow 3.2, 3.4 σ \rightarrow 3.9, 4.2 σ

1510.03657;

1702.01521;

1809.03290]

Other channel: $R(J/\psi)$

The LFU violation was measured in $B_c^- \rightarrow J/\psi$ transitions $\mathcal{R}(J/\psi) = \frac{\mathcal{B}(B_c^- \to J/\psi\tau^-\bar{\nu}_{\tau})}{\mathcal{B}(B_c^- \to J/\psi\ell^-\bar{\nu}_{\ell})}$

 $R(J/\psi)_{\rm SM} = 0.2582 \pm 0.0038$

Sankar, JHEP '18]

LHC phenomenology in light of R(D) and $R(D^*)$ anomalies

- $R(J/\psi)_{\rm exp} = 0.71 \pm 0.17_{\rm stat} \pm 0.18_{\rm syst}$ [LHCb, 1711.05623]
 - Based on first lattice result [HPQCD, 2007.06956]
 - 1.8σ consistent using $N_f=2+1+1$, with "HISQ" c and heavy quark b
- **Same-direction tension** as R(D) and R(D^{*}) anomalies
- Early new physics study, e.g., [Watanabe, PLB '18; Alok, Kumar, Kumar, Kumbhakar,

Let us consider New Physics

New physics interpretations

New physics (NP) for R(D(*)) anomaly can be model-independently described by

$$\begin{aligned} \mathcal{H}_{\text{eff}} &= 2\sqrt{2}G_F V_{cb} \Big[(1+C_{V_1})(\overline{c}\gamma^{\mu}P_Lb)(\overline{\tau}\gamma_{\mu}P_Lv_{\tau}) + C_{V_2}(\overline{c}\gamma^{\mu}P_Rb)(\overline{\tau}\gamma_{\mu}P_Lv_{\tau}) \\ &+ C_{S_1}(\overline{c}P_Rb)(\overline{\tau}P_Lv_{\tau}) + C_{S_2}(\overline{c}P_Lb)(\overline{\tau}P_Lv_{\tau}) \\ &+ C_T(\overline{c}\sigma^{\mu\nu}P_Lb)(\overline{\tau}\sigma_{\mu\nu}P_Lv_{\tau}) \Big] + \text{h.c.} \,, \end{aligned}$$

 \bullet

LHC phenomenology in light of R(D) and $R(D^*)$ anomalies **Teppei Kitahara** (Nagoya Univ.), International Joint Workshop on the SM and Beyond, October 14, 2021, NTHU, online

Light right-handed neutrinos ($m_{\nu_R} < m_B$) can also be included, but constrained from the collider bounds

Single new particle interpretations (1/2)

Single WC scenarios *W*′, C_{V_1} SU(2)_L-singlet vector LeptoQuark (LQ), $SU(2)_L$ -triplet or -singlet scalar LQ (S₁) Charged Higgs, C_{S_1} $SU(2)_L$ -singlet or doublet vector LQ (U₁, V₂) Charged Higgs with generic flavour C_{S_2} structure $C_{S_2} = 4C_T$ scalar SU(2)_L-doublet LQ (R₂) ("4" comes from Fierz identity and is modified by RG evolution)

There are so many detailed studies for each single particle scenario

LHC phenomenology in light of R(D) and $R(D^*)$ anomalies **Teppei Kitahara** (Nagoya Univ.), International Joint Workshop on the SM and Beyond, October 14, 2021, NTHU, online

Two WCs scenarios

 $(C_{V_1}, C_{S_2} = -4C_T)$ SU(2)_L-singlet scalar LQ (S₁)

 (C_{V_1}, C_{S_1}) SU(2)_L-singlet vector LQ (U₁)

 (C_{S_1}, C_{S_2}) Charged Higgs with generic flavour structure

Model-independent prediction: $R(\Lambda_c)$

Baryonic counterpart:

 $SU(2)_{L}$ -singlet scalar LQ (S₁)

Charged Higgs

Sum rule for $R(\Lambda_c)$ prediction from the hadronic form-factor analysis

Model-independent sum rule

(also valid for light RH neutrino scenarios)

 $R(\Lambda_c) = 0.38 \pm 0.01_{R(D^{(*)})} \pm 0.01_{\rm FF}$

LHC phenomenology in light of R(D) and $R(D^*)$ anomalies

Teppei Kitahara (Nagoya Univ.), International Joint Workshop on the SM and Beyond, October 14, 2021, NTHU, online

 $\mathcal{R}(\Lambda_c) = \frac{\mathcal{B}(\Lambda_b^0 \to \Lambda_c^+ \tau^- \bar{\nu}_{\tau})}{\mathcal{B}(\Lambda_r^0 \to \Lambda_c^+ \ell^- \bar{\nu}_{\ell})} \quad @ LHCb \quad [Bernlochner, Liegt, Robinson, Sutcliffe '18]$ $SU(2)_{L}$ -singlet vector LQ (U₁)

SU(2)_L-doublet scalar LQ (R₂)

Similar ellipses!

 $\frac{R(\Lambda_c)}{R(\Lambda_c)_{\rm SM}} \simeq 0.26 \frac{R(D)}{R(D)_{\rm SM}} + 0.74 \frac{R(D^*)}{R(D^*)_{\rm SM}}$

Crosscheck of $R(D^{(*)})$ anomaly is possible by $R(\Lambda_c)$

There is no data yet

 $R(\Lambda_c)_{SM} = 0.324 \pm 0.004$ [Blanke, Crivellin, TK, Moscati, Nierste, Nisandzic, '19]

Single new particle interpretations (2/2)

LHC phenomenology in light of R(D) and $R(D^*)$ anomalies **Teppei Kitahara** (Nagoya Univ.), International Joint Workshop on the SM and Beyond, October 14, 2021, NTHU, online

Severely constrained from $\Delta M_{\rm s},~Z' \to \tau \tau$ search [Faroughy, Greljo, Kamenik '16], and $W' \to \tau \nu$

Severely constrained from $B_c \to \tau \nu$, $H^{\pm} \to \tau \nu$ search [Iguro, Tobe '17; Iguro, Omura, Takeuchi '18]

Collider bound comes from direct search via QCD coupling $gg \rightarrow LQLQ^*$, and broad parameter

Collider search for $pp \rightarrow \tau \nu$

The direct bound comes from high- p_T tails in mono- τ searches

LHC phenomenology in light of R(D) and $R(D^*)$ anomalies

Teppei Kitahara (Nagoya Univ.), International Joint Workshop on the SM and Beyond, October 14, 2021, NTHU, online

[Greljo, Camalich, Ruiz-Alvarez '19; Marzocca, Min, Son, '20; Iguro, Takeuchi, Watanabe '20]

What we did: LQ mass dependence

We investigate LQ mass effects, which relax the collider bound [Iguro, Takeuchi, Watanabe '20]

Here, to amplify the LQ signal/BG ratio, $t \sim - \mathcal{O}(1)$ TeV² is expected. Now, the LQ mass receives additional effective mass via the large t

Collider bound should be relaxed when lighter LQ mass range

What we did: Additional b-jet tagging

Single operator scenarios

[Endo, Iguro, TK, Takeuchi, Watanabe, PRELIMINARY]

LHC phenomenology in light of R(D) and $R(D^*)$ anomalies

Teppei Kitahara (Nagoya Univ.), International Joint Workshop on the SM and Beyond, October 14, 2021, NTHU, online

R₂ leptoquark scenario

LHC phenomenology in light of R(D) and $R(D^*)$ anomalies

Teppei Kitahara (Nagoya Univ.), International Joint Workshop on the SM and Beyond, October 14, 2021, NTHU, online

 $M_{\rm R_2 LQ} = 2.5 \,\rm TeV$

[Endo, Iguro, TK, Takeuchi, Watanabe, **PRELIMINARY**]

R₂ LQ scenario can be probed by b+tau+MET search with Run 2 data (139fb⁻¹)

Pseudorapidity distribution

LHC phenomenology in light of R(D) and $R(D^*)$ anomalies

Teppei Kitahara (Nagoya Univ.), International Joint Workshop on the SM and Beyond, October 14, 2021, NTHU, online

[Endo, Iguro, TK, Takeuchi, Watanabe, PRELIMINARY]

Conclusions

- Lepton-flavor universality violation [R(D) and $R(D^*)$ anomalies] is observed at ~4 σ levels \blacklozenge
- Several leptoquark can easily explain the R(D) and $R(D^*)$ anomalies
 - We simulate the LHC sensitivity of the leptoquark indirect search via

$$pp \rightarrow \tau \nu$$
 and $pp \rightarrow \tau \nu + b$

٠

- We show that additional b-jet tagging significantly improves the LHC sensitivity, and light LQ mass \blacklozenge can relax the collider bounds.
 - We also study the angular distributions of $pp \rightarrow \tau \nu + b$ to distinguish the LQ scenarios

Backup

Measurements of V_{cb}

LHC phenomenology in light of R(D) and $R(D^*)$ anomalies **Teppei Kitahara** (Nagoya Univ.), International Joint Workshop on the SM and Beyond, October 14, 2021, NTHU, online

 $\ell = e, \mu$

Hadron states X_c = D^{**}, D^{*}, D, Dπ, Dππ...

Polarization observables in $b \rightarrow c \tau \nu$

The following two polarization observables could be important to confirm/distinguish new physics

Longitudinal D^* polarization ($D^* \to D\pi$)

$$F_L(D^*) = \frac{\Gamma(B \to D_L^* \tau \nu)}{\Gamma(B \to D^* \tau \nu)}$$

$$P_{\tau}(D^{(*)}) = \frac{\Gamma\left(B \to D^{(*)}\tau^{\lambda=+1/2}\nu\right) - \Gamma\left(B \to D^{(*)}\tau^{\lambda=-1/2}\nu\right)}{\Gamma\left(B \to D^{(*)}\tau\nu\right)}$$

LHC phenomenology in light of R(D) and $R(D^*)$ anomalies Teppei Kitahara (Nagoya Univ.), International Joint Workshop on the SM and Beyond, October 14, 2021, NTHU, online

 τ polarization asymmetry along the longitudinal directions of $\tau (\tau \rightarrow \pi \nu, \rho \nu)$ [Tanaka, ZPC '95]

Fit of angle dependence: between π , ρ and $W^*(\tau v)$ in τ rest frame

Predicted ranges of polarization observables

Polarization observables can discriminate these LQ scenarios [Iguro, TK, Omura, Watanabe, Yamamoto, '19, UPDATED]

•

		$F_L^{D^*}$	P^D_{τ}	$P_{ au}^{D^*}$	R_D	R_{D^*}
[Predicted ranges]	$R_2 LQ$	[0.442, 0.447]	[0.336, 0.456]	[-0.464, -0.424]	1σ data	1σ data
	$S_1 LQ$	[0.436, 0.481]	[-0.006, 0.489]	[-0.512, -0.450]	1σ data	1σ data
	${\rm U_1 \ LQ}$	[0.440, 0.459]	[0.156, 0.422]	[-0.542, -0.488]	1σ data	1σ data
	\mathbf{SM}	0.46(4)	0.325(9)	-0.497(13)	0.299(3)	0.258(5)
	data	0.60(9)	-	-0.38(55)	0.340(30)	0.295(14)
(50 ab ⁻¹)	Belle II	0.04	3%	0.07	3%	2%

 $P_{\tau}(D)$ can well discriminate the new physics

LHC mono- τ search gives more severe bound than $BR(B_c^+ \rightarrow \tau^+ \nu) < 30\%$

[Blanke, Crivellin, TK, Moscati, Nierste, Nisandzic, PRD '19]

 $SU(2)_L$ -singlet scalar LQ (S_1) **Charged Higgs**

$$\boldsymbol{P_{\tau}}(\boldsymbol{D})$$
 vs. $\boldsymbol{P_{\tau}}(\boldsymbol{D^*})$

$$\boldsymbol{P_{\tau}}(\boldsymbol{D})$$
 vs. $\boldsymbol{F}_{L}\left(\boldsymbol{D}^{*}\right)$

 $SU(2)_L$ -singlet vector LQ (U_1) SU(2)_L-doublet scalar LQ (R_2)

 $P_{\tau}(D)$ can discriminate the new physics

 $P_{\tau}(D^*)$ could discriminate the new physics

 $F_{I}(D^{*})$ is difficult to discriminate them

Tensor operator vs. $F_I(D^*)$

Tensor operator in new physics scenario is significantly constrained by $F_L(D^*)$

 $\mathcal{H}_{\text{eff}} = 2\sqrt{2}G_F V_{cb} C_T(\mu) \left(\overline{c}\sigma^{\mu\nu} P_L b\right) \left(\overline{\tau}\sigma_{\mu\nu} P_L \nu_\tau\right)$

 $C_{T, SM} = 0$

 $F_L(D^*) = 0.60 \pm 0.08 \pm 0.04$ [Belle, 1903.03102]

LHC phenomenology in light of R(D) and $R(D^*)$ anomalies **Teppei Kitahara** (Nagoya Univ.), International Joint Workshop on the SM and Beyond, October 14, 2021, NTHU, online

[Iguro, TK, Omura, Watanabe, Yamamoto, '19, UPDATED]

