Higgs pair production at LHC

Go Mishima (Tohoku Univ.)

[arXiv:2110.03697]

with J. Davies, F. Herren, M. Steinhauser

JHEP 05 (2019) 157 with J. Davies, F. Herren, M. Steinhauser

JHEP 11 (2019) 024 with J. Davies, G. Heinrich, S. P. Jones, M. Kerner, M. Steinhauser, D. Wellmann

JHEP 01 (2019) 176, JHEP 03 (2018) 048 with J. Davies, M. Steinhauser, D. Wellmann

Motivation: triple Higgs coupling

$$\lambda_{HHH}$$
 in the Standard Model
Higgs potential $V(H) = \frac{1}{2}m_H^2 H^2 + \lambda_{HHH}vH^3 + \frac{1}{4}\lambda_{HHHH}H^4$
in SM: $\lambda_{HHH} = \frac{m_H^2}{2v^2} = 0.13...$ (not directly measured)

[CMS: arXiv:2011.12373]: $-3.3 < \lambda/\lambda_{SM} < 8.5$

Motivation: triple Higgs coupling

λ_{HHH} in the Standard Model

The simplest process is Higgs pair production.

Challenging channel but reachable in the future

more data will be available!

How to get the LHC theoretical prediction

	initial state	final state
1. Partonic Cross Section	gluon-gluon gluon-quark quark-quark	Higgs pair (gluon/quark radiation)
2. Hadronic Cross Section	proton-proton	Higgs pair (gluon/quark radiation)
3. Hadronization (Jets)	proton-proton	Higgs pair + Jets

How to get the LHC theoretical prediction

We focus		
	initial state	final state
1. Partonic Cross Section	gluon-gluon gluon-quark quark-quark	Higgs pair (gluon/quark radiation)
2. Hadronic Cross Section	proton-proton	Higgs pair (gluon/quark radiation)
3. Hadronization (Jets)	proton-proton	Higgs pair + Jets

partonic -> hadronic is well established

Possible partonic channels

8/25

Possible partonic channels

8/25

Gluon fusion is the dominant channel

What was done so far

LO: known analytically since 1988 (Glover&van der Bij, Plehn&Spira&Zerwas)

NLO: exact numerical results known only recently 2016many many many approximations are investigated

NNLO: known in Higgs Effective Field Theory (HEFT: mt -> infinity), numerically

NLO: large-mt approx. and high-energy approx.

[D. Wellmann, Ph. D. thesis]

Our achievement: analytic, 1/mt corrections

Ingredients of NNLO cross section

Individual pieces are divergent!

We obtain finite quantity only after adding them all.

$$\sigma_{pp \to HHX}(s) = \sum_{i,j=g,q,\bar{q}} \int_{0}^{1} dx_1 dx_2 f_i(x_1) f_j(x_2) \sigma_{ij \to HH}(x_1 x_2 s)$$

PDFs should be determined experimentally by using the same renormalization scheme.

Common used convention is Altarelli-Parisi splitting functions.

$$\sigma_{gg,\text{coll}}^{(2)} = -\frac{1}{\epsilon} \left(\frac{\mu^2}{\mu_f^2}\right)^{\epsilon} \int_{1-\delta}^1 \mathrm{d}z \, P_{gg}^{(0)}(z) \sigma_{gg}^{(1)}(x/z) + \dots \,,$$

NLO splitting functions

$$P_{\rm ps}^{(1)}(x) = 4C_F n_f \left(\frac{20}{9}\frac{1}{x} - 2 + 6x - 4H_0 + x^2 \left[\frac{8}{3}H_0 - \frac{56}{9}\right] + (1+x)\left[5H_0 - 2H_{0,0}\right]\right)$$
(4.7)

$$P_{qg}^{(1)}(x) = 4C_A n_f \left(\frac{20}{9} \frac{1}{x} - 2 + 25x - 2p_{qg}(-x)H_{-1,0} - 2p_{qg}(x)H_{1,1} + x^2 \left[\frac{44}{3}H_0 - \frac{218}{9}\right] + 4(1-x)\left[H_{0,0} - 2H_0 + xH_1\right] - 4\zeta_2 x - 6H_{0,0} + 9H_0\right) + 4C_F n_f \left(2p_{qg}(x)\left[H_{1,0} + H_{1,1} + H_2 - \zeta_2\right] + 4x^2\left[H_0 + H_{0,0} + \frac{5}{2}\right] + 2(1-x)\left[H_0 + H_{0,0} - 2xH_1 + \frac{29}{4}\right] - \frac{15}{2} - H_{0,0} - \frac{1}{2}H_0\right)$$
(4.8)

$$P_{gq}^{(1)}(x) = 4C_{A}C_{F}\left(\frac{1}{x} + 2p_{gq}(x)\left[H_{1,0} + H_{1,1} + H_{2} - \frac{11}{6}H_{1}\right] - x^{2}\left[\frac{8}{3}H_{0} - \frac{44}{9}\right] + 4\zeta_{2} - 2$$

-7H₀ + 2H_{0,0} - 2H₁x + (1 + x) $\left[2H_{0,0} - 5H_{0} + \frac{37}{9}\right] - 2p_{gq}(-x)H_{-1,0}\right) - 4C_{F}n_{f}\left(\frac{2}{3}x\right)$
- $p_{gq}(x)\left[\frac{2}{3}H_{1} - \frac{10}{9}\right] + 4C_{F}^{2}\left(p_{gq}(x)\left[3H_{1} - 2H_{1,1}\right] + (1 + x)\left[H_{0,0} - \frac{7}{2} + \frac{7}{2}H_{0}\right] - 3H_{0,0}$
+ $1 - \frac{3}{2}H_{0} + 2H_{1}x\right)$ (4.9)

$$P_{gg}^{(1)}(x) = 4C_{A}n_{f}\left(1-x-\frac{10}{9}p_{gg}(x)-\frac{13}{9}\left(\frac{1}{x}-x^{2}\right)-\frac{2}{3}(1+x)H_{0}-\frac{2}{3}\delta(1-x)\right)+4C_{A}^{2}\left(27+(1+x)\left[\frac{11}{3}H_{0}+8H_{0,0}-\frac{27}{2}\right]+2p_{gg}(-x)\left[H_{0,0}-2H_{-1,0}-\zeta_{2}\right]-\frac{67}{9}\left(\frac{1}{x}-x^{2}\right)-12H_{0}-\frac{44}{3}x^{2}H_{0}+2p_{gg}(x)\left[\frac{67}{18}-\zeta_{2}+H_{0,0}+2H_{1,0}+2H_{2}\right]+\delta(1-x)\left[\frac{8}{3}+3\zeta_{3}\right]\right)+4C_{F}n_{f}\left(2H_{0}+\frac{2}{3}\frac{1}{x}+\frac{10}{3}x^{2}-12+(1+x)\left[4-5H_{0}-2H_{0,0}\right]-\frac{1}{2}\delta(1-x)\right).$$

$$(4.10)$$

14/25

Ingredients of NNLO cross section

Individual pieces are divergent!

We obtain finite quantity only after adding them all.

Expansion in 1/mt during the integration

$$\int d^d \ell_1 d^d \ell_2 \frac{1}{(\ell_2 - \ell_1)^2 - m_t^2} \frac{1}{(\ell_2 + q_1)^2 - m_t^2} \frac{1}{(\ell_2 - q_2)^2 - m_t^2} \frac{1}{(\ell_1^2 - q_2)^2} \frac{1}{($$

$$= \int d^{d}\ell_{1} d^{d}\ell_{2} \frac{1}{\ell_{2}^{2} - m_{t}^{2}} \frac{1}{\ell_{2}^{2} - m_{t}^{2}} \frac{1}{(\ell_{2}^{2} - \ell_{1}^{2})^{2} - m_{t}^{2}} \frac{1}{(\ell_{2}^{2} - \ell_{1}^{2})^{2} - m_{t}^{2}} \frac{1}{\ell_{1}^{2}} \frac{1}{\ell_{1}^{2}} \frac{1}{\ell_{1}^{2}} \frac{1}{\ell_{1}^{2}} + \mathcal{O}(q_{i})$$

$$+ \int d^{d}\ell_{1} d^{d}\ell_{2} \frac{1}{\ell_{2}^{2} - m_{t}^{2}} \frac{1}{\ell_{2}^{2} - m_{t}^{2}} \frac{1}{\ell_{2}^{2} - m_{t}^{2}} \frac{1}{\ell_{2}^{2} - m_{t}^{2}} \frac{1}{\ell_{1}^{2}} \frac{1}{(\ell_{1} + q_{1})^{2}} \frac{1}{(\ell_{1} - q_{2})^{2}} + \mathcal{O}(q_{i})$$

$$\int d^d \ell_1 d^d \ell_2 \frac{1}{(\ell_2 - \ell_1)^2 - m_t^2} \frac{1}{(\ell_2 + q_1)^2 - m_t^2} \frac{1}{(\ell_2 - q_2)^2 - m_t^2} \frac{1}{(\ell_1^2 - q_2)^2} \frac{1}{($$

$$= \int d^{d}\ell_{1} d^{d}\ell \, \frac{1}{\ell_{2}^{2} - m_{t}^{2}} \frac{1}{\ell_{2}^{2} - m_{t}^{2}} \frac{1}{(\ell_{2}^{2} - \ell_{1}^{2})^{2} - m_{t}^{2}} \frac{1}{(\ell_{2}^{2} - \ell_{1}^{2})^{2} - m_{t}^{2}} \frac{1}{\ell_{1}^{2}} \frac{1}{\ell_{1}^{2}} \frac{1}{\ell_{1}^{2}} \frac{1}{\ell_{1}^{2}} + \mathcal{O}(q_{i})$$

$$+ \int d^{d}\ell_{1} d^{d}\ell_{2} \frac{1}{\ell_{2}^{2} - m_{t}^{2}} \frac{1}{\ell_{2}^{2} - m_{t}^{2}} \frac{1}{\ell_{2}^{2} - m_{t}^{2}} \frac{1}{\ell_{2}^{2} - m_{t}^{2}} \frac{1}{\ell_{1}^{2}} \frac{1}{(\ell_{1} + q_{1})^{2}} \frac{1}{(\ell_{1} - q_{2})^{2}} + \mathcal{O}(q_{i})$$

$$\int d^d \ell_1 d^d \ell_2 \frac{1}{(\ell_2 - \ell_1)^2 - m_t^2} \frac{1}{(\ell_2 + q_1)^2 - m_t^2} \frac{1}{(\ell_2 - q_2)^2 - m_t^2} \frac{1}{(\ell_1 - q_2)^2} \frac{$$

$$= \int d^{d}\ell_{1} d^{d}\ell_{2} \frac{1}{\ell_{2}^{2} - m_{t}^{2}} \frac{1}{\ell_{2}^{2} - m_{t}^{2}} \frac{1}{(\ell_{2}^{2} - \ell_{1}^{2})^{2} - m_{t}^{2}} \frac{1}{(\ell_{2}^{2} - \ell_{1}^{2})^{2} - m_{t}^{2}} \frac{1}{\ell_{1}^{2}} \frac{1}{\ell_{1}^{2}} \frac{1}{\ell_{1}^{2}} \frac{1}{\ell_{1}^{2}} \frac{1}{\ell_{1}^{2}} + \mathcal{O}(q_{i})$$

$$+ \int d^{d}\ell_{1} d^{d}\ell \frac{1}{\ell_{2}^{2} - m_{t}^{2}} \frac{1}{\ell_{1}^{2} - m_{t}^{2} - m_{t}^{2}} \frac{1}{\ell_{1}^{2} - m_{t}^{2} - m_{t}$$

For real radiations, we use the Optical Theorem

The expansion method explained before is also used.

There are many diagrams

Channel	qgraf diagrams	gen-filtered diagrams	building block diagrams
gg	16,631,778	160,154	4,612
gc	$1,\!671,\!006$	$5,\!426$	336
$c\bar{c}$	406,662	$3,\!879$	243
CC	(not considered)	(not considered)	8
gq	$1,\!671,\!006$	$5,\!426$	336
cq	(not considered)	(not considered)	8
$q\bar{q}$	406,662	$3,\!879$	243
qq	(not considered)	(not considered)	8
qq'	203,331	34	4

using "building block"

After an algebraic reduction (Integration-by-Parts reduction), there are only 17 1-loop 3-particle phase-space integral and 57 tree-level 4-particle phase-space integral

Due to the Optical Theorem, tree-level 4-particle phase-space integrals look like three-loop integrals.

We solve them analytically for the first time.

Result of partonic cross section

Result of partonic XS (preliminary)

Summary

- Higgs pair production is the simplest channel to examine the triple Higgs coupling.
- •We improved the existing NNLO cross section by implementing the higher order 1/mt corrections analytically.