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Motivation: triple Higgs coupling
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Motivation: triple Higgs coupling

3

 in the Standard ModelλHHH

The simplest process is Higgs pair production.

(a) (b) (c)

(d) (e) (f)

Figure 1: One- and two-loop Feynman diagrams contributing to gg ! HH. Solid, curly,
and dashed lines represent fermions, gluons, and Higgs bosons respectively.
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denote the contribution from one-particle reducible diagrams such as the

one shown in Fig. 1(f). In Ref. [9] this contribution has not been considered since the full
top quark mass dependence is available from Eqs. (24), (25) and (26) of Ref. [43].

At this point a comment on the definition of ↵s is in order. In Ref. [9] ↵s has been defined
with six active flavours which is an appropriate choice for the high-energy limit. In this
paper, we compare to Ref. [12] where a five-flavour ↵s has been used. Thus, we have to
transform ↵s and the gluon wave function from the six-flavour to the five-flavour theory
using the relations
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where A⌫ is the gluon wave function. As can be seen from these expressions the additional
terms cancel because the number of external gluon fields equals the number of strong
couplings gs in the Born amplitude, such that the resulting analytic expressions remain
identical.
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where A⌫ is the gluon wave function. As can be seen from these expressions the additional
terms cancel because the number of external gluon fields equals the number of strong
couplings gs in the Born amplitude, such that the resulting analytic expressions remain
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Challenging channel but reachable in the future
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Theory prediction
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more data will be available!
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How to get the LHC theoretical prediction

6

initial state final state

1. Partonic Cross  Section
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gluon-quark 
quark-quark

Higgs pair 
(gluon/quark 
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2. Hadronic Cross Section proton-proton
Higgs pair 
(gluon/quark 
radiation)

 3. Hadronization (Jets) proton-proton Higgs pair 
+ Jets
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partonic -> hadronic is well established

7

partonic cross section hadronic cross section 
(including hadronization)

convoluting parton distribution function (PDF) 
taking into account parton shower 
(POWHEG, MG5_aMC@NLO, Sherpa, Pythia, 
Herwig,...)1.2. QCD corrections for gluon fusion 13
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Figure 1.5: Higgs pair invariant mass and transverse-momentum distributions for a center-of-mass
energy of 14 TeV in various approximations. The full NLO results are shown in red. The red bands
show the renormalization and factorization scale dependence obtained from a 7-point scale varia-
tion around the central scales µR =µF = mH H /2 [18].

i.e. polynomial, for small values a Richardson extrapolation [54] has been used to obtain the narrow-
width approximation from results at finite values of this imaginary part. The observed convergence
is good and can also be used for a quantitative estimate of the extrapolation error in addition to
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where A⌫ is the gluon wave function. As can be seen from these expressions the additional
terms cancel because the number of external gluon fields equals the number of strong
couplings gs in the Born amplitude, such that the resulting analytic expressions remain
identical.
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Possible partonic channels
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6 Chapter 1. HH cross section predictions
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Figure 1.1: Diagrams contributing to Higgs pair production: (a) gluon fusion, (b) vector-boson fu-
sion, (c) double Higgs-strahlung and (d) double Higgs bremsstrahlung off top quarks. The trilinear
Higgs coupling contribution is marked in red.

including partial finite top quark mass effects [24]. Very recently, also the third order corrections
have been computed in the heavy top quark limit [25]. The QCD corrections increase the total cross
section by about a factor of two with respect to the LO prediction, and they will be discussed in
more detail in the following section.

Vector-boson fusion. The vector-boson fusion (VBF) qq ! H H qq is the second-largest produc-
tion mechanism, and it is dominated by t-channel W and Z exchange in analogy to single Higgs
production. It involves continuum diagrams originating from two Higgs radiations off the virtual
W or Z bosons, and diagrams in which a single Higgs boson (off-shell) splits into a Higgs pair
(Fig. 1.1b). The QCD corrections are only known in the structure-function approach, i.e. where
only the t-channel W and Z exchange is taken into account and interference effects for external
quarks of the same flavor are neglected. This approximation is valid at the level of a percent similar
to the single Higgs case. Within this approach the QCD corrections to the total cross section are
known up to N3LO [26–28], while the exclusive calculation is available at NNLO [29]. The pertur-
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including partial finite top quark mass effects [24]. Very recently, also the third order corrections
have been computed in the heavy top quark limit [25]. The QCD corrections increase the total cross
section by about a factor of two with respect to the LO prediction, and they will be discussed in
more detail in the following section.

Vector-boson fusion. The vector-boson fusion (VBF) qq ! H H qq is the second-largest produc-
tion mechanism, and it is dominated by t-channel W and Z exchange in analogy to single Higgs
production. It involves continuum diagrams originating from two Higgs radiations off the virtual
W or Z bosons, and diagrams in which a single Higgs boson (off-shell) splits into a Higgs pair
(Fig. 1.1b). The QCD corrections are only known in the structure-function approach, i.e. where
only the t-channel W and Z exchange is taken into account and interference effects for external
quarks of the same flavor are neglected. This approximation is valid at the level of a percent similar
to the single Higgs case. Within this approach the QCD corrections to the total cross section are
known up to N3LO [26–28], while the exclusive calculation is available at NNLO [29]. The pertur-
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1.1. Overview of production modes 7

gg → HH (NNLOFTapprox)

VBF (N3LO)

WHH (NNLO)

ZHH (NNLO)

ttHH (NLO)

tjHH (NLO)

σ(pp → HH + X) [fb]

MH = 125 GeV

PDF4LHC15
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Figure 1.2: Total production cross sections for Higgs pairs within the SM via gluon fusion,
vector-boson fusion, double Higgs-strahlung and double Higgs bremsstrahlung off top quarks.
PDF4LHC15 parton densities have been used with the scale choices according to Table 1.1. The size
of the bands shows the total uncertainties originating from the scale dependence and the PDF+Æs
uncertainties.

Figure 1.3: Higgs pair invariant mass distribution at leading order for the different contributions to
the gluon fusion production mechanism and their interference.

[LHCHXSWG-2019-005, arXiv:1901.00012]

Gluon fusion is the dominant channel

9



/25

What was done so far

10

LO: known analytically since 1988 (Glover&van der Bij, Plehn&Spira&Zerwas) 
 
NLO: exact numerical results known only recently 2016- 
         many many many approximations are investigated  

NNLO: known in Higgs Effective Field Theory (HEFT: mt -> infinity), numerically

[D. Wellmann, Ph. D. thesis]

3. Higgs-Boson Pair Production

Fig. 3.4 shows the leading order form factors F (0)tri , F
(0)
box1 and F

(0)
box2 for a scattering angle

�xed at � = �/2. The topmost plot shows the ’triangle’ form factor F (0)tri . The high energy
expansion, shown as dash-dotted curves, lie on top of the exact result for the whole range
in the centre of mass energy

p
s shown in this plot, down to the top quark pair production

threshold at
p
s = 2mt = 346GeV for both real and imaginary part of the form factor. For

energies below the top quark pair production threshold, the process develops no imaginary
part which is therefore in that range zero. At the same time, the real part is in that range
very well reproduced by the large top quark mass expansion, including terms up to 1/m12

t
.

Note, that the ’triangle’ form factor has no dependence on the Higgs boson mass.
The plots in the middle and at the bottom of Fig. 3.4 give the form factor F (0)box1 and F

(0)
box2,

respectively, again for a �xed scattering angle of � = �/2. Both plots contain each two sets
of curves: One, which shows the exact result together with the large top mass expansion
and the high energy expansion, where the latter includes all computed terms up tom4

H
of

the Higgs mass expansion. In contrast, for the second set, the limitmH ! 0 is carefully
performed for the exact result and for both the high energy expansion and the large
top mass expansion, the Higgs boson mass is explicitly set to zero. One can observe,
that – as expected – both the full Higgs boson mass dependent exact result as well as its
’massless-Higgs’-limit are equally well approximated in the high energy region for the
real and imaginary parts of the form factors alike. For centre of mass energies smaller
than

p
s . 800GeV, the high energy expansion diverges from the exact result and cannot

be used in that form to describe the form factor in that region of the phase space. A
method to nevertheless obtain a good approximation of the form factors for regions below
p
s . 800GeV will be discussed in section 3.4. For the imaginary part, the situation is

slightly better as it can reproduce the exact result down to centre of mass energies of
p
s ⇡ 500GeV before the expansion starts to diverge from the exact result.
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Figure 3.5.: LO di�erential partonic cross section for � = �/2. The solid curve shows
the exact result, the dotted curve gives the large top mass expansion up to 1/m12

t
and the

dash-dotted curves show the high energy expansion for expansion depths up tom18
t
.

80

NLO: large-mt approx.  
       and high-energy approx.
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Our achievement: analytic, 1/mt corrections

11
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Ingredients of NNLO cross section

12

1

1

1

1

3-loop 2 -> 2 
(virtual-virtual)

2-loop 2 -> 3 
(real-virtual)

1-loop 2 -> 4 
(real-real)

collinear 
counter term ( (

<latexit sha1_base64="7MpVYqNh2uYqdObbR12Gqf4L9cY="></latexit>

} Individual pieces  
are divergent! 
 
We obtain  
finite quantity  
only after  
adding them all.
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collinear counter term can be explained  
as "renormalization of PDFs"

13

PDFs should be determined experimentally 
by using the same renormalization scheme.

Common used convention is 
Altarelli-Parisi splitting functions.

σpp→HHX(s) = ∑
i,j=g,q,q̄

∫
1

0
dx1dx2 fi(x1)fj(x2)σij→HH(x1x2s)

(a) LO (b) NLO, n2

h
(c) NLO, n3

h
(d) NNLO, n2

h

(e) NNLO, n2

h
(f) NNLO, n3

h
(g) NNLO, n3

h
(h) NNLO, n4

h

Figure 11: Sample forward-scattering Feynman diagrams for the virtual corrections at
LO, NLO and NNLO.

this reference contains explicit formulae which solve Eq. (10) for the renormalized cross
section �ij within perturbation theory. The resulting collinear counterterms are computed
from convolution integrals of the following form,

�
(2)

gg,coll
= �

1

✏

 
µ
2

µ
2

f

!✏ Z
1

1��

dz P (0)

gg
(z)�(1)

gg
(x/z) + . . . , (13)

where the ellipses represent further contributions to the collinear NNLO counterterm
�
(2)

gg,coll
. Note that in Eq. (13) we distinguish the renormalization scale µ from the factor-

ization scale µf . We compute the collinear counterterms in the nl flavour theory, i.e., in
Eq. (12) the one-loop coe�cient of the QCD beta function is given by

�0 =
11

12
CA �

1

3
Tfnl , (14)

where nl is the number of massless quarks. We compute all contributions in terms of
SU(Nc) colour factors CA = Nc and CF = (N2

c
� 1)/(2Nc) and the trace normalization

Tf = 1/2.

Inspection of Eq. (12) shows that at NNLO the collinear counterterm starts at O(1/✏2)
whereas the real and virtual corrections contain poles up to O(1/✏4). In Appendix A we
provide useful formulae for the analytic computation of the convolution integrals, such as
the one shown in Eq. (13). These are obtained by expanding in �; we have computed all
contributions up to order ⇢3 and �

30.

2.6 Virtual corrections

Virtual corrections only exist for the gg and qq̄ channels. In the latter case they contribute
for the first time at NNLO and are suppressed by 1/m2

t
at the level of the amplitude (and

so by 1/m4

t
at the level of the cross section). We discuss them in Appendix C. In

15
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NLO splitting functions

14

Corresponding to the maximal weight 2l−1 of the harmonic sums in section 3, the l-loop splitting
functions involve harmonic polylogarithms up to weight 2l−2. Hence our three-loop results cannot
be expressed in terms of standard polylogarithms which are sufficiently general only for w≤ 3.

For completeness we recall the one- and two-loop non-singlet splitting functions [3, 8]

P (0)
ps (x) = 0

P (0)
qg (x) = 2nf pqg(x)

P (0)
gq (x) = 2CF pgq(x)

P (0)
gg (x) = CA

(

4pgg(x)+
11
3
δ(1− x)

)

−
2
3
nf δ(1− x) (4.6)

and

P(1)
ps (x) = 4CFnf

(20
9
1
x
−2+6x−4H0+ x2

[8
3
H0−

56
9

]

+(1+ x)
[

5H0−2H0,0
])

(4.7)

P(1)
qg (x) = 4CAnf

(20
9
1
x
−2+25x−2pqg(−x)H−1,0−2pqg(x)H1,1+ x2

[44
3
H0−

218
9

]

+4(1− x)
[

H0,0−2H0+ xH1
]

−4ζ2x−6H0,0+9H0
)

+4CFnf
(

2pqg(x)
[

H1,0+H1,1+H2

−ζ2
]

+4x2
[

H0+H0,0+
5
2

]

+2(1− x)
[

H0+H0,0−2xH1+
29
4

]

−
15
2
−H0,0−

1
2
H0
)

(4.8)

P(1)
gq (x) = 4CACF

(1
x

+2pgq(x)
[

H1,0+H1,1+H2−
11
6
H1
]

− x2
[8
3
H0−

44
9

]

+4ζ2−2

−7H0+2H0,0−2H1x+(1+ x)
[

2H0,0−5H0+
37
9

]

−2pgq(−x)H−1,0

)

−4CFnf
(2
3
x

−pgq(x)
[2
3
H1−

10
9

])

+4CF
2
(

pgq(x)
[

3H1−2H1,1
]

+(1+ x)
[

H0,0−
7
2

+
7
2
H0
]

−3H0,0

+1−
3
2
H0+2H1x

)

(4.9)

P(1)
gg (x) = 4CAnf

(

1− x−
10
9
pgg(x)−

13
9

(1
x
− x2

)

−
2
3
(1+ x)H0−

2
3
δ(1− x)

)

+4CA
2
(

27

+(1+ x)
[11
3
H0+8H0,0−

27
2

]

+2pgg(−x)
[

H0,0−2H−1,0−ζ2
]

−
67
9

(1
x
− x2

)

−12H0

−
44
3
x2H0+2pgg(x)

[67
18

−ζ2+H0,0+2H1,0+2H2
]

+δ(1− x)
[8
3

+3ζ3
])

+4CFnf
(

2H0

+
2
3
1
x

+
10
3
x2−12+(1+ x)

[

4−5H0−2H0,0
]

−
1
2
δ(1− x)

)

. (4.10)

Here and in Eqs. (4.12) – (4.15) we suppress the argument x of the polylogarithms and use

pqg(x) = 1−2x+2x2

pgq(x) = 2x−1−2+ x
pgg(x) = (1− x)−1+ x−1−2+ x− x2 . (4.11)

15
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Ingredients of NNLO cross section

15

1

1

1

1

3-loop 2 -> 2 
(virtual-virtual)

2-loop 2 -> 3 
(real-virtual)

1-loop 2 -> 4 
(real-real)

collinear 
counter term ( (

<latexit sha1_base64="7MpVYqNh2uYqdObbR12Gqf4L9cY="></latexit>

} Individual pieces  
are divergent! 
 
We obtain  
finite quantity  
only after  
adding them all.
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Expansion in 1/mt during the integration

16

26 top-quark–mass effects in the higgs boson–gluon form factor at four loops

we will describe the computation while focusing on the differences w.r.t. Sec. 2.2.1.
Furthermore, we will assemble the leading order term in the top-quark–mass expansion
in the EFT where the top quark has been integrated out.

3.1.1 Structure of the computation

generating diagrams We generate all contributing diagrams and process them as
described in Sec. 2.3 with the difference that exp performs an asymptotic expansion in
the top-quark mass instead of a naive Taylor expansion. As a consequence, we obtain
one or more subdiagrams for each original diagram, including the information about
the scaling of the loop momenta. Examples of the diagramatic LME through three loops
are shown in Fig. 2.2 and four-loop examples are shown in Fig. 3.1.

=T ⌦

+T ⌦

+T ⌦

+T ⌦

=T ⌦

⌦+T

+T ⌦

+T ⌦

Figure 3.1: Expansion by subgraph of sample diagrams contributing to the form factor at four
loops. T denotes a Taylor expansion in the momenta and the hard subgraphs are
re-inserted into the co-subgraphs in the vertices, denoted by the black dots. Straight,
dashed and curly lines denote top quarks, Higgs bosons and gluons, respectively.

differences w.r .t. the previous chapter In contrast to the computation of
the Wilson coefficients, we can not simply build superdiagrams, since diagrams with

Expansion in 1/mt  
is done 
for the integrand
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2.2 matching full and effective theories 15
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Figure 2.2: Expansion by subgraph of sample diagrams contributing to Afull through three loops.
T denotes Taylor expansion w.r.t. momenta and the hard subgraphs are re-inserted in
the co-subgraphs in the vertex denoted by the black dot. Straight, dashed and curly
lines denote top quarks, Higgs bosons and gluons respectively.
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For real radiations, we use the Optical Theorem

(a) (b) (c) (d) (e) (f)

Figure 1: Sample Feynman diagrams contributing to the real radiation. Contributions
such as those shown in (c) lead to n

3

h
contributions which have already been computed in

Ref. [25]. The n
3

h
contributions of (d) contain a top quark loop without a Higgs coupling

and have not been computed in Ref. [25]; they are considered here.

(a) (b) (c) (d)

Figure 2: Sample Feynman diagrams in the forward-scattering kinematics. Three- and
four-particle cuts are shown by blue and green dashed lines, respectively. The n

3

h
contri-

butions as shown in (b) have already been considered in [25] but those in (c) have not;
they are considered here.

butions which have a closed loop with only gluon couplings (as shown in Fig. 1(c)). Such
terms are not included in Ref. [25], but are computed in this paper.

The remainder of the paper is organized as follows: in the next section we discuss the
individual parts of our calculation. This concerns in particular the setup used for the
computation of the real-radiation corrections including the asymptotic expansion and the
reduction to phase-space master integrals. Furthermore, we discuss the ultraviolet and
collinear counterterms to subtract the divergences from initial-state radiation. Section 3
is dedicated to the phase-space master integrals. We provide details on the transformation
of the system of di↵erential equations to ✏ form and on the computation of the boundary
conditions in the soft limit. We discuss our analytic and numerical results in Section 4 and
summarize our findings in Section 5. In the appendix we provide useful additional mate-
rial such as explicit formulae used for the computation of the collinear counterterms, the
integrands of the phase-space master integrals, NNLO virtual corrections to the channel
qq̄ ! HH and NNLO virtual corrections involving four closed top quark loops. Further-
more, we describe in detail our approach to obtain the leading 1/mt term for double Higgs
production from the analytic expressions of the single-Higgs production cross section.
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is dedicated to the phase-space master integrals. We provide details on the transformation
of the system of di↵erential equations to ✏ form and on the computation of the boundary
conditions in the soft limit. We discuss our analytic and numerical results in Section 4 and
summarize our findings in Section 5. In the appendix we provide useful additional mate-
rial such as explicit formulae used for the computation of the collinear counterterms, the
integrands of the phase-space master integrals, NNLO virtual corrections to the channel
qq̄ ! HH and NNLO virtual corrections involving four closed top quark loops. Further-
more, we describe in detail our approach to obtain the leading 1/mt term for double Higgs
production from the analytic expressions of the single-Higgs production cross section.
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2-loop 2 -> 3 
x 

1-loop 2 -> 3

1-loop 2 -> 4 
x 

1-loop 2 -> 4

The expansion method explained before is also used.
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There are many diagrams
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Channel qgraf diagrams gen-filtered diagrams building block diagrams
gg 16,631,778 160,154 4,612
gc 1,671,006 5,426 336
cc̄ 406,662 3,879 243
cc (not considered) (not considered) 8
gq 1,671,006 5,426 336
cq (not considered) (not considered) 8
qq̄ 406,662 3,879 243
qq (not considered) (not considered) 8
qq

0 203,331 34 4

Table 1: The number of “full” diagrams generated by qgraf and after filtering with gen,
compared to the number of “building block” diagrams, for each channel. For the cc, cq
and qq channels we have only applied the “building block” approach.

to consider the gg, gq, qq̄, qq and qq
0 partonic channels, where q and q

0 denote two
di↵erent light quark flavours. Note that both quark and anti-quark contributions have
to be taken into account, i.e., gq and qq also stand for the gq̄ and q̄q̄ contributions,
respectively. Similarly in qq

0, all quark-quark, quark–anti-quark and anti-quark–anti-
quark contributions have to be considered, where in each case the quark flavours are
di↵erent. For all channels one obtains the same result after replacing a quark by an
anti-quark and vice versa. We also compute channels with one or both external gluons
replaced with ghosts (c) and anti-ghosts (c̄), i.e., in addition to the channels listed above
we have gc, gc̄, cc, cc̄, c̄c̄, cq and c̄q. This allows us to sum over the gluon polarizations
according to

X

�

"
(�),⇤
µ

(q1)"
(�)

⌫
(q2) = �gµ⌫ ,

where � runs from 0 to 3.

We generate the amplitudes using qgraf [34], however this program does not allow one to
filter only diagrams which admit a cut through the required final-state particles (here two
Higgs bosons and one or more gluons or light fermion pairs), as depicted in Fig. 2 by the
green and blue dashed lines. We thus generate all possible forward-scattering diagrams
and post-process them using gen [35] which is able to filter the qgraf output based on
our required cuts.

Due to the large qgraf output (for the gg channel, 16.6 million diagrams, 42 GB in
total) it proved necessary to separate the diagrams into subsets containing particular
numbers of top quark, light quark, cut- and un-cut Higgs lines which could be filtered by
gen separately, in parallel. After filtering, the number of diagrams remaining is greatly
reduced (for the gg channel, to a total of 160 thousand diagrams, 416 MB in total). In
Table 1 we show the numbers of diagrams for all channels which we compute.

6

using "building block"
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After an algebraic reduction (Integration-by-Parts reduction), 
there are only 17 1-loop 3-particle phase-space integral 
                 and 57 tree-level 4-particle phase-space integral 
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Due to the Optical Theorem, 
tree-level 4-particle  
phase-space integrals 
look like three-loop integrals. 

We solve them analytically 
for the first time.
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Result of partonic XS (preliminary)
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Summary

25

•Higgs pair production is the simplest channel 
to examine the triple Higgs coupling. 
•We improved the existing NNLO cross 
section by implementing the higher order  
1/mt corrections analytically.


