#### The Future is Illuminating 2nd NCTS TG2.1 Hsinchu Hub Workshop

June 28 - 30, 2022, NTHU, Hsinchu, TW

### Direct Constraints on Axion-photon-photon Coupling via Inverse Primakoff Scattering

#### Chih-Pan Wu Université de Montréal

Co-author: C.-P. Liu, L. Singh, Greeshma C., J.-W. Chen, H.-C. Chi, M.K. Pandey, H.T. Wong

Reference: arXiv: 2206.07878 **P. 1** 

#### Portal to New Physics: Axions & ALPs

- Physics should be the same for every time, space, and observer.
- Gauge invariant  $\rightarrow$  symmetries  $\rightarrow$  SM gauge theory
- Some phenomena cannot be explained with current SM
  - Strong CP problem
  - The exist of DM
- QCD axion mass  $m_a \simeq m_\pi \frac{f_\pi}{f_a}$ , coupling  $\sim 1/f_a$ . Other axions  $m_{ALP} \sim \frac{\Lambda^2}{f_a}$  is nearly arbitrary.
- Interaction Lagrangian  $\mathcal{L}_{I} = -\frac{g_{a\gamma\gamma}}{4}\phi_{a}F_{\mu\nu}\widetilde{F}^{\mu\nu} \sum_{f}\frac{g_{aff}}{2m_{f}}\partial_{\mu}\phi_{a}\overline{\Psi}_{f}(\gamma^{\mu}\gamma_{5})\Psi_{f}$

## Exclusion Plot for $g_{a\gamma\gamma}$



Ciaran O'Hare, doi.org/10.5281/zenodo.3932430

#### Strategies: Search for Dark Matters



Using Semiconductor (Ex: high-purity Ge) or scintillator (Ex: liquid-Xe or crystal) to detect the existence of DM.

- Haloscopes
- Helioscopes/LSW
- Astro bounds
- Cosmology
- Our proposal: dark matter (DM) detectors

#### Primakoff and ABC Reaction



Javier Redondo, JCAP 12 (2013) 008, arXiv:1310.0823

#### Sources of Axions – Solar



Solar axion luminosity should fellow stellar energy-loss limits

$$\begin{split} \Phi_{\rm a} &= g_{10}^2 \, 3.75 \times 10^{11} \ {\rm cm}^{-2} \ {\rm s}^{-1} \\ L_{\rm a} &= g_{10}^2 \, 1.85 \times 10^{-3} L_{\odot} \,, \\ \langle E \rangle &= 4.20 \ {\rm keV} \,, \\ \langle E^2 \rangle &= 22.7 \ {\rm keV}^2 \,, \end{split}$$

Fitting Formula:

$$\frac{\mathrm{d}\Phi_{\mathrm{a}}}{\mathrm{d}E} = 6.02 \times 10^{10} \ \mathrm{cm}^{-2} \ \mathrm{s}^{-1} \ \mathrm{keV}^{-1} \ g_{10}^2 \ E^{2.481} \mathrm{e}^{-E/1.205}$$

Javier Redondo, JCAP **12** (2013) 008, <u>arXiv:1310.0823</u>. S. Andriamonje *et al* (CAST Collaboration), JCAP **04** (2007) 010, <u>arXiv:hep-ex/0702006</u>.

#### Sources of Axions – Dark Matters

#### Standard Halo Model

Scattering rate depends on halo profile



$$\frac{dR}{dT} = \frac{\rho_{\chi} N_T}{m_{\chi}} \frac{d \langle \sigma v_{\chi} \rangle}{dT}$$

$$\frac{d\langle \sigma v_{\chi} \rangle}{dT} = \int_{v_{\min}}^{v_{\max}} d^3 v_{\chi} f(\vec{v}_{\chi}) v_{\chi} \frac{d\sigma}{dT}$$

$$f(\vec{v}_{\chi}) = \frac{1}{K} e^{-\frac{|\vec{v}_{\chi} + \vec{v}_{E}|^{2}}{v_{0}^{2}}} \Theta(v_{\text{esc}} - |\vec{v}_{\chi} + \vec{v}_{E}|)$$

$$v_0 = 220 \text{ km/s} \sim 10^{-3} c$$
  
 $v_E = 232 \text{ km/s}$   
 $v_{esc} = 544 \text{ km/s}$ 

#### $2\gamma$ Decay v.s. Inverse Primakoff (IP)



$$\Gamma^V_{a\gamma\gamma} = \frac{1}{64\pi} g^2_{a\gamma\gamma} m^3_a$$

 $\begin{cases} \gamma + A & \text{IP}_{el} : \text{elastic scattering} \\ \gamma + A^* & \text{IP}_{ex} : \text{atomic excitation} \\ \gamma + A^+ + e^- & \text{IP}_{ion} : \text{atomic ionization} \end{cases}$ 

### Double-pole in Scattering Cross Section

$$\frac{d^2\sigma}{dTd\Omega} = \frac{\alpha_{em}g_{a\gamma\gamma}^2}{16\pi} \frac{E_a - T}{v_a E_a} \left( \frac{V_L}{(q^2)^2} \mathscr{R}_L + \frac{V_T}{(Q^2)^2} \mathscr{R}_T \right)$$
$$\mathscr{R}_{L/T} = \sum_F \sum_I |\langle F|\rho/\vec{j}_\perp |I\rangle|^2 \,\delta\left(E_I - E_F - T\right)$$
$$V_L = 2 \left[E_a^2 - m_a^2 + (E_a - T)^2\right] q^2 - (q^2)^2$$
$$- (T^2 - 2E_a T + m_a^2)^2,$$
$$V_T = \frac{m_a^4}{2q^2} + \frac{Q^2}{2q^2} \left[ (m_a^4 - 4m_a^2 E_a T) + (2m_a^2 + 4E_a^2 - 4E_a T + 2T^2) Q^2 - (Q^2)^2 \right]$$

$$\frac{1}{(Q^2)^2} \to \frac{1}{(Q^2 - \Lambda_T^2/4)^2 + T^2 \Lambda_T^2} \qquad \Lambda_T \equiv n_A \sigma_\gamma(T)$$

 $m_a = 1 \text{ keV}, \ v_a = 10^{-1}c$ 10<sup>-4</sup>  $Q^2 < 0 \rightarrow Q^2 > 0$ **10<sup>-50</sup>** always always d*σ*/d*T* (cm<sup>2</sup>/eV) 10<sup>-531</sup> 10<sup>-56</sup>-10<sup>-59</sup> 10<sup>-62</sup> 10 50 100 500 1000 Energy Transfer T (eV) 11

kinematically

allowed  $Q^2 = 0$ 

#### Equivalent Photon Approx. (EPA)

$$\sigma_{photo}(T) = \frac{2\pi^2 \alpha}{T} R_T \left(T, \left|\vec{q}\right| = T\right)$$
$$\left[\frac{d\sigma}{dT}\right]_{\text{EPA}}^{\text{IP}_{ion}} = \frac{g_{a\gamma\gamma}^2}{32\pi^2} \frac{\sigma_{\gamma}}{\Lambda_T} \frac{m_a^4}{v_a^2 E_a^2} \tan^{-1} \left[\frac{Q^2 - \Lambda_T^2/4}{T\Lambda_T}\right] \Big|_{Q_{\min}^2}^{Q_{\max}^2}$$
$$R_{\text{EPA}}^{\text{IP}_{ion}} = n_A v_a \sigma_{\text{EPA}}^{\text{IP}_{ion}} = \frac{g_{a\gamma\gamma}^2 m_a^3}{32\pi} \frac{m_a}{E_a} = \frac{2}{\gamma} \Gamma_{a\gamma\gamma}^V$$

- Cross sections depend on the target
- Rates are independent on the target



#### **Differential Event Rates**



### Expected Event Rates

| Event Rates (ton <sup>-1</sup> year <sup>-1</sup> ) |                            |                      |                       |                      |
|-----------------------------------------------------|----------------------------|----------------------|-----------------------|----------------------|
|                                                     | Detection Channels         |                      |                       |                      |
| $m_a$                                               | $\Gamma^V_{a\gamma\gamma}$ | $\mathrm{IP}_{el}$   | $\mathrm{IP}_{ex}$    | $\mathrm{IP}_{ion}$  |
| DM-ALP                                              |                            |                      |                       |                      |
| $1 \mathrm{eV}$                                     | $2.5 \times 10^{-4}$       | $O(10^{-14})$        | 0                     | 0                    |
| 1  keV                                              | 250                        | $1.7 \times 10^{-5}$ | $1.6 \times 10^{-3}$  | 500                  |
| 1 MeV                                               | $2.5 \times 10^{8}$        | $9.9 \times 10^{-5}$ | $2.2 \times 10^{-10}$ | $5.0 {	imes} 10^{8}$ |
| solar-ALP                                           |                            |                      |                       |                      |
| 1  meV                                              | $O(10^{-27})$              | $7.0 \times 10^{-2}$ | $2.9 \times 10^{-4}$  | $8.1 \times 10^{-3}$ |
| 1  eV                                               | $O(10^{-15})$              | $7.0 \times 10^{-2}$ | $2.9 \times 10^{-4}$  | $8.1 \times 10^{-3}$ |
| 1  keV                                              | $3.9 \times 10^{-3}$       | $7.0 \times 10^{-2}$ | $2.9 \times 10^{-4}$  | $1.6 \times 10^{-2}$ |

#### New Limits on Exclusion Plot



### Summary

- Axions and ALPs are well-motivated "portals" to new physics, and their laboratory (direct) constraints can be expanded and improved with current (& future) DM detectors.
- We advance further in this work by systematically studying the 3 inverse-Primakoff (IP) channels via well-benchmarked atomic many-body calculations; and comparing with 2γ-decay process by considering both solar- and DM-ALPs sources.

Reference:

C.-P. Wu *et al.*, arXiv:2206.07878 [hep-ph]. Jiunn-Wei Chen *et al.*, Phys. Rev. D 93, 093012 (2016), arXiv:1601.07257 [hep-ph].

# Thanks for your attention!

#### The Future is Illuminating

2nd NCTS TG2.1 Hsinchu Hub Workshop June 28 - 30, 2022, NTHU, Hsinchu, TW