Blazar-Boosted Dark Matter

Jin-Wei Wang

Astroparticle Physics, SISSA

JW Wang, A. Granelli, P. Ullio; PRL, arXiv:2111.13644

A. Granelli, P. Ullio, JW Wang; JCAP, arXiv:2202.07598

Taipei, Jun 30th, 2022

Outline

- Introduction and motivation
- Spectrum of the relativistic blazar jet
- Dark matter density profile
- Dark matter flux from blazars
- Experimental constraints
- Summary

Dark matter in the Universe

 The astrophysical and cosmological observations have provided compelling evidences of the existence of dark matter (DM).

Cold DM (~26%) $\Omega_c h^2 = 0.11933 \pm 0.00091$ Baryons (~5%) $\Omega_b h^2 = 0.02242 \pm 0.00014$ Dark energy (~69%) $\Omega_{\Lambda} = 0.6889 \pm 0.0056$

- Improve DM kinetic energy: scattering between cosmic-ray particles and DM (CRDM); [1810.10543]
- **Reduce** *E*_{*th*}: Migdal effects; [1907.11485, 1707.07258]

Why Blazars ?

Why Blazars ?

- The extremely powerful jet, which implies high proton and/or electron flux;
- Large DM density;

 The leptonic (synchrotron-self-Compton) model: the radio through Xray emission is produced by electron-synchrotron radiation, while the γrays are produced by inverse Compton scattering;

Mrk421 SSC

 Pure hadronic (proton-synchrotron) model: high-energy emission is produced by proton-synchrotron emission.

Mrk421 Proton Synchrotron

 Lepto-Hadronic model: high-energy emission is produced by secondary leptons produced in p-γ interactions are usually referred to as leptohadronic models

Mrk421 Lepto-Hadronic

• The leptonic (synchrotron-self-Compton) model: the radio through Xray emission is produced by synchrotron radiation, while the γ -rays are

produced by inverse Compton scattering;

- Pure hadronic (proton-synchrotron) model: high-energy emission is produced by proton-synchrotron emission.
- Lepto-Hadronic model: high-energy emission is produced by secondary leptons produced in p-γ interactions are usually referred to as leptohadronic models

Photo-Meson Production

$$p+\gamma
ightarrow p'+\pi^{0}$$

 $p+\gamma
ightarrow n+\pi^{+}$
 $p+\gamma
ightarrow p'+\pi^{+}+\pi^{-}$

Neutrinos as smoking gun of hadronic processes

- The leptonic (synchrotron-self-Compton) model: the radio through Xray emission is produced by synchrotron radiation, while the γ-rays are produced by inverse Compton scattering;
- Pure hadronic (proton-synchrotron) model: high-energy emission is In July 2018, the IceCube Neutrino Observatory announced that they have traced an extremely-high-energy neutrino back to its point of origin in the blazar TXS 0506 +056

hadronic models

Photo-Meson Production

$$p+\gamma
ightarrow p'+\pi^{0}$$

 $p+\gamma
ightarrow n+\pi^{+}$
 $p+\gamma
ightarrow p'+\pi^{+}+\pi^{-}$

Neutrinos as smoking gun of hadronic processes

- The leptonic (synchrotron-self-Compton) model: the radio through Xray emission is produced by synchrotron radiation, while the γ-rays are produced by inverse Compton scattering;
- Pure hadronic (proton-synchrotron) model: high-energy emission is produced by proton-synchrotron emission.
- Lepto-Hadronic model: high-energy emission is produced by secondary leptons produced in p-γ interactions are usually referred to as leptohadronic models
- TXS 0506+056 lepto-hadronic model & BL Lacerta pure hadronic model
- Consider the **proton/electron-DM** interaction.

Black hole (BH) frame

$$\frac{d\Gamma'_j}{dE'_j d\Omega'} = \frac{1}{4\pi} c_j \left(\frac{E'_j}{m_j}\right)^{-\alpha_j}$$

with $\beta=\sqrt{1-1/\gamma^2}\,$ is the particle velocity

• The spectrum of blazar jet in black hole frame can be expressed as:

$$\frac{d\Gamma}{dEd\Omega} = \Gamma_B \frac{d\Gamma'}{dE'd\Omega'} \left| \det \begin{pmatrix} \frac{\partial\gamma'}{\partial\gamma} & \frac{\partial\gamma'}{\partial\mu} \\ \frac{\partial\mu'}{\partial\gamma} & \frac{\partial\mu'}{\partial\mu} \end{pmatrix} \right| = \frac{d\Gamma'}{dE'd\Omega'} \frac{\beta}{\sqrt{(1-\beta\beta_B\mu)^2 - (1-\beta^2)(1-\beta_B^2)}} \,.$$

• Using the jet power to fix normalization factor c_i

$$L_{j} = \int d\Omega \int dT_{j} (T_{j} + m_{j}) \frac{d\Gamma_{j}}{dT_{j}d\Omega} = c_{j}m_{j}^{2}\Gamma_{B}^{2} \int_{\gamma_{\min,j}^{\prime}}^{\gamma_{\max,j}^{\prime}} d\gamma_{j}^{\prime} (\gamma_{j}^{\prime})^{1-\alpha_{j}}$$
$$c_{j} = \frac{L_{j}}{m_{j}^{2}\Gamma_{B}^{2}} \times \begin{cases} (2 - \alpha_{j}) / \left[(\gamma_{\max,j}^{\prime})^{2-\alpha_{j}} - (\gamma_{\min,j}^{\prime})^{2-\alpha_{j}} \right] & \text{if } \alpha_{j} \neq 2\\ 1 / \log \left(\gamma_{\max,j}^{\prime} / \gamma_{\min,j}^{\prime} \right) & \text{if } \alpha_{j} = 2 \end{cases}$$

	(Lepto-)Hadronic Model Parameters			
	Parameter (unit)	TXS 0506+056	BL Lacertae	
	z	0.337	0.069	
	$d_L ~({ m Mpc})$	1835.4	322.7	
	$M_{ m BH}~(M_{\odot})$	$3.09 imes10^8$	8.65×10^7	
$\mathbf{D} = 2\Gamma_{\mathbf{D}}$	${\cal D}$	40^{\star}	15	
$\mathcal{D} = 21 B$	Γ_B	20	15	
	$ heta_{ m LOS}\left(^{\circ} ight)$	0	3.82	
	$lpha_p$	2.0	2.4	
	$lpha_e$	2.0	3.5	
	$\gamma_{\min,p}'$	1.0	1.0	
	$\gamma_{\max,p}'$	$5.5 imes 10^{7^{\star}}$	1.9×10^9	
	$\gamma_{\min,e}'$	500	700	
	$\gamma_{\max,e}'$	$1.3 imes 10^{4^{\star}}$	1.5×10^{4}	
	$L_p ~({ m erg/s})$	$2.55 \times 10^{48^{\star}}$	$9.8 imes 10^{48}$	
	$L_e \ (\mathrm{erg/s})$	$1.32 \times 10^{44^{\star}}$	$8.7 imes 10^{42}$	
	$c_p \; (\mathrm{s}^{-1} \mathrm{sr}^{-1} \mathrm{GeV}^{-1})$	2.54×10^{47}	1.24×10^{49}	
	$c_e \; (\mathrm{s}^{-1} \mathrm{sr}^{-1} \mathrm{GeV}^{-1})$	2.42×10^{50}	2.59×10^{54}	

 $\mathcal{D} = \Gamma_B$ $heta_{\mathrm{LOS}} \simeq 1/\mathcal{D}$

• Spectrum in BH frame:

$$\frac{d\Gamma_j}{dT_j d\Omega} = \frac{1}{4\pi} c_j \left(1 + \frac{T_j}{m_j}\right)^{-\alpha_j} \frac{\beta_j (1 - \beta_j \beta_B \mu)^{-\alpha_j} \Gamma_B^{-\alpha_j}}{\sqrt{(1 - \beta_j \beta_B \mu)^2 - (1 - \beta_j^2)(1 - \beta_B^2)}}$$

• The DM distribution depends on the properties of central supermassive black hole;

Set $\gamma = 1$, which corresponds to the NFW profile

• The DM distribution depends on the properties of central supermassive black hole;

Set $\gamma = 1$, which corresponds to the NFW profile

• The possible DM annihilations could flatten the DM profile in the inner region

• The DM distribution depends on the properties of central supermassive black hole;

Set $\gamma = 1$, which corresponds to the NFW profile

• The possible DM annihilations could flatten the DM profile in the inner region

Where R_S is Schwarzschild radius

• Consider two benchmark points

DM profile

BMP1) $\langle \sigma v \rangle_0 = 0$, so that $\rho_{\rm core} \to +\infty$ and $\rho_{\rm DM} = \rho'$; BMP2) $\langle \sigma v \rangle_0 = 10^{-28} \,\mathrm{cm}^3 \,\mathrm{s}^{-1}$ and $t_{\rm BH} = 10^9 \,\mathrm{yr}$;

• The line-of-sight integral of DM density

$$\Sigma_{\rm DM}(r) \equiv \int_{r_{\rm min}}^r \rho_{\rm DM}(r') \, dr'$$

Dark matter flux from blazars

• The BBDM flux can be expressed as

$$\frac{d\Phi_{\chi}}{dT_{\chi}} = \frac{\Sigma_{\rm DM}^{\rm tot}\,\widetilde{\sigma}_{\chi p}}{2\pi m_{\chi} d_L^2} \int_0^{2\pi} \, d\phi_s \int_{T_p^{\rm min}(T_{\chi})}^{T_p^{\rm max}} \frac{dT_p}{T_{\chi}^{\rm max}(T_p)} \frac{d\Gamma_p}{dT_p d\Omega}$$

Direct detection constraints

• The BBDM-induced target nucleus (electron) recoil rate can be expressed as

Constraints from Super-K

- Due to the large volume (22.5 kt in fiducial volume) and long exposure time (2628.1 days), Super-K is an ideal detector to search for DM-electron scattering signals.
- Three energy bins are considered, and the spatial distribution of the events are also given.

$$P\left(\mu_e > \cos \delta; T_{\chi}^{\min}(T_e = T_l^{\min})\right) \gtrsim 0.95$$

Constraints from Super-K

• After doing a Poisson analysis, we derive the 95% C.L. upper limits

	Sensitivity of Super-Kamiokande				
_		Bin1	Bin2	Bin3	
	$T_e \; (\text{GeV})$	(0.1, 1.33)	(1.33, 20)	$(20, 10^3)$	
	$N_{ m Data}$	4042	658	3	
	$N_{ m Bkg}$	3992.9	772.6	7.4	
	$\epsilon_{ m sig}$	93.0%	91.3%	81.1%	
	δ	24°	7°	5°	
	$N_{ m TXS}^{\delta}$	169	2	0	
	$N_{ m BL}^{\delta}$	167	4	0	
	$N^{\delta}_{ m Bkg}$	172.6	2.88	0.014	
$\left[\right]$	$N_{\rm TXS} \ (95\% {\rm ~C.L.})$	19.39	3.42	2.98	
L	$N_{\rm BL} \ (95\% { m C.L.})$	17.27	6.27	2.98	

• The number of BBDM-induced electron recoil events at Super-K

$$N_e^{\rm DM} \simeq N_e \sigma_{\chi e} t_{\rm obs} \int_{T_{\rm exp}^{\rm min}}^{T_{\rm exp}^{\rm max}} dT_e \int_{T_{\chi}^{\rm min}(T_e)}^{+\infty} \frac{dT_{\chi}}{T_e^{\rm max}(T_{\chi})} \frac{d\Phi_{\chi}^z}{dT_{\chi}}$$

$$N_e^{\rm DM} imes \epsilon_{\rm sig} < N_{\rm TXS} \left(N_{\rm BL}
ight)$$

Constraints from Super-K

• Combing three bins, we derive the 95% C.L. upper limits on $\sigma_{\chi e}$

• Left: fix $\sigma_{\chi p}$ with XENON1 T constraints; Right: for various $\sigma_{\chi p}$.

Summary

- A novel astrophysical mechanism for DM acceleration;
- Due to the powerful jets and large DM densities, the blazars are ideal DM boosters and can induce a stronger DM flux than that from CRs;
- The strong constraints on $\sigma_{\chi p}$ and $\sigma_{\chi e}$ are derived by using the results of XENON1T and Super-K;
- It not only unveils a novel fascinating possibility to explore the nature of DM but also provides astrophysicists with a new way to better understand the characteristics of blazar jets.

Summary

- A novel astrophysical mechanism for DM acceleration;
- Due to the powerful jets and large DM densities, the blazars are ideal DM boosters and can induce a stronger DM flux than that from CRs;
- The strong constraints on $\sigma_{\chi p}$ and $\sigma_{\chi e}$ are derived by using the results of XENON1T and Super-K;
- It not only unveils a novel fascinating possibility to explore the nature of DM but also provides astrophysicists with a new way to better understand the characteristics of blazar jets.

Thank you