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What is / why tensor network?

– a good approximation for a many-body state

What is a many-body state?

Ex:

exponentially many...



strongly correlated electrons

lattice gauge theory

frustrated spins

quantum devices

quantum chemistry

cold atoms



Why is it important?

# of 
spins Configurations # of coef Storage

1 2 16 bytes

2 4 32 bytes

10 1024 ≈ 8 KB

30 ≈ 108 ≈ 130 MB

50 ≈ 1014 ≈ 140 TB

100 ≈ 1029 ≈ 1014 × 100 TB



# of 
spins Configurations # of coef Storage

1 2 16 bytes

2 4 32 bytes

10 1024 ≈ 8 KB

30 ≈ 108 ≈ 130 MB

50 ≈ 1014 ≈ 140 TB

100 ≈ 1029 ≈ 1014 × 100 TB

Why is it important?



# of 
spins Configurations # of coef Storage

1 2 16 bytes

2 4 32 bytes

10 1024 ≈ 8 KB

30 ≈ 108 ≈ 130 MB

50 ≈ 1014 ≈ 140 TB

100 ≈ 1029 ≈ 1014 × 100 TB

Why is it important?

We need a good approximation!
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Many-body state as a tensor

Many body state
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Many-body state as a tensor

Many body state
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Graphic notation
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Matrix product state (MPS)

Many body state

Matrix product state

virtual dimension

physical dimension



Singular value decomposition (SVD)

Eigenvalue value decomposition

Singular value decomposition

real & positive



Singular value decomposition (SVD)

=

=
=

d1 d2 d1 d2
χ χ

χ ≤ min (d1,d2)



Reshape between tensor and matrix

(just relabel the indices)

d1 d2 d1×d2

d1

d2

d1×d2

matrix vector



Reshape between tensor and matrix

d1

d2

d3 d1×d2 d3

SVD χ χ
d1×d2 d3

χ ≤ min (d1d2, d3)

tensor matrix



Transform a many-body state to an MPS
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Transform a many-body state to an MPS
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Transform a many-body state to an MPS

…
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… … Left canonical form

orthogonality center

…

SVD

SVD

contract

contract



Move the orthogonality center
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Mixed canonical form



Move the orthogonality center

… … …

… … …

… … …

SVD

… … …

Mixed canonical form

Right canonical form
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… …
…

Not so useful



Restrict the bond (or virtual) dimension
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What dose it mean physically ...

In practice, restrict the maximal virtual dimension to χ



Restrict the bond (or virtual) dimension

42

2 22

χ 4

2 2

2

…
2

χ

… …
…

What dose it mean physically ...

Restrict the entanglement !

(Why …?)

In practice, restrict the maximal virtual dimension to χ



Entanglement between two subsystems

A B

Entanglement entropy

Reduced density matrix

Ex:



=

Orthogonal form and the reduce density matrix

=

=

χ

U†

U
Λ

χ

χ  is also the dimension of ρA



Area law

boundary

Gapped ground states of local Hamiltonians

Why are the low-entanglement states important?

In general, volume

Ex:

(Due to the local correlation)

MPS obeys 1D area law

Volume law

χ=10

χ=100

χ=1000

many-body Hilbert space



Matrix product operator (MPO)

Ex: Transverse-field Ising model

physical dimension=2

virtual dimension=3

physical index

virtual index



Application:

Density Matrix Renormalization Group (DMRG)
[Steven R. White, PRB (1992)]

Optimize the MPS tensors one by one

Variationally finding the ground state



Physical meaning of the orthogonal form

=χ d

χ’

χ’
If χ’ = χ d  ,             is a unitary (square) matrix

Rotation of basis

If χ’ < χ d  ,  Rotation + truncate basis

2 2 2 2

2

2

is a wavefunction of the whole system
in the reduced basis



DMRG algorithm

1. Prepare an initial MPS in the left canonical form

orthogonality center



DMRG algorithm

2. Define the effective Hamiltonian

The Hamiltonian of the whole system

in the reduced Hilbert space

reduced basis for sites from 1 to N-2



DMRG algorithm

3. Solve the ground state in the reduced Hilbert space

=



DMRG algorithm

4. SVD on 

Truncate the virtual dimension based on the singular values

SVD

Rotate to the eigenbasis of 

Explain:

A B

=

U

Λ

U†



DMRG algorithm

5. Absorb the diagonal matrix to the left

orthogonality center

6. Optimize the next two sites   (and so on...)



Computational complexity

matrix multiplication

d1 d2 d3

Complexity: d1 × d2 × d3

(Number of real-number multiplications)



Computational complexity

χ

d
D

d

χ

L R

Complexity: ?



Computational complexity

χ

L:

d
D

χ

χ

χ3 d D

χ

χ
d

D

d

D

χ2 d2 D2

χ

χ

d
D

χ

χ3 d D

DMRG complexity L χ∝ 3

χ

χ

d

D

χ

χ

D d



Correlation function

i i+r

Assume all the tensors are the same→ uniform MPS
(translational invariant)

Transfer matrix  E “Transfer matrix”  EO



Transfer matrix

Tr

(normalization condition)



For correlation function, we need to consider to the second order

decay exponentially with r

Correlation function

MPS has finite correlation length. (gapped ground state)



Correlation function



2D systems

MPS

PEPS

MERA

TRG

and many others...

Other tensor networks

Thank you!



Measurement

On-site observable

=
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