Matrix product state, entanglement, and applications

Chia-Min Chung

National Sun Yat-sen University

Aug 29, 2022

2022 summer school for physics and tensor-network methods in correlated systems

What is / why tensor network?

- a good approximation for a many-body state

What is a many-body state?

Ex: $\downarrow \uparrow \uparrow \uparrow \downarrow \downarrow$

$$
\begin{aligned}
\Psi & =\sum_{\left\{s_{i}\right\}} \psi_{s_{1}, s_{2}, \cdots, s_{N}}\left|s_{1}, s_{2}, \cdots, s_{N}\right\rangle \\
& =\psi_{0,0,0, \cdots|\uparrow \uparrow \uparrow \cdots\rangle} \\
& +\psi_{1,0,0, \cdots}|\downarrow \uparrow \uparrow \cdots\rangle \\
& +\psi_{0,1,0, \cdots}|\uparrow \downarrow \uparrow \cdots\rangle \\
& +\cdots
\end{aligned} \quad \text { exponentially many } \ldots
$$

cold atoms

frustrated spins

lattice gauge theory

Why is it important?

$$
\Psi=\sum_{\left\{s_{i}\right\}} \psi_{s_{1}, s_{2}, \cdots, s_{N}}\left|s_{1}, s_{2}, \cdots, s_{N}\right\rangle
$$

\# of spins	Configurations	\# of coef	Storage
1	\uparrow, \downarrow	2	16 bytes
2	$\uparrow \uparrow, \uparrow \downarrow, \downarrow \uparrow, \downarrow \downarrow$	4	32 bytes
10		1024	$\approx 8 \mathrm{~KB}$
30		$\approx 10^{8}$	$\approx 130 \mathrm{MB}$
50		$\approx 10^{14}$	$\approx 140 \mathrm{~TB}$
100		$\approx 10^{29} \times 100 \mathrm{~TB}$	

Why is it important?

Why is it important?

Many-body state as a tensor

Tensor $\quad T_{i, j, k, l}$

Many body state $\quad \psi_{s_{1}, s_{2}, \cdots, s_{N}}$

Many-body state as a tensor

Graphic notation

Scalar $C \quad 4$
Vector $\quad V_{i}$

Matrix $\quad M_{i j} \quad\left[\begin{array}{cc}2 & 1 \\ -1 & 4\end{array}\right]$

Tensor $\quad T_{i, j, k, l}$
Many body state $\quad \psi_{s_{1}, s_{2}, \cdots, s_{N}}$

Graphical notation

Tensor contraction

$$
\begin{aligned}
M_{i k} & =\sum_{j} A_{i j} B_{j k} \\
T_{i k n} & =\sum_{j q m} A_{i j m} B_{j k q} C_{m q n}
\end{aligned}
$$

$$
i \multimap \xrightarrow{j}-k
$$

Graphical notation

Tensor contraction

$$
\begin{aligned}
& M_{i k}=\sum_{j} A_{i j} B_{j k} \\
& T_{i k n}=\sum_{j q m} A_{i j m} B_{j k q} C_{m q n}
\end{aligned}
$$

$$
i \rightarrow \stackrel{j}{\square}-k
$$

Matrix product state (MPS)

$\psi_{s_{1}, s_{2}, \cdots, s_{N}} \quad$ 】

Singular value decomposition (SVD)

Eigenvalue value decomposition

$$
\begin{aligned}
& {\left[\begin{array}{lll}
& A & \\
& & \\
& & \\
& & \\
& &
\end{array}\right]\left[\begin{array}{llll}
\lambda_{1} & & & \\
& \lambda_{2} & & \\
& & \ddots
\end{array}\right]\left[\begin{array}{ll}
& \\
& U^{\dagger} \\
& \\
& \\
& \\
& \\
& \\
& \\
& \\
&
\end{array} U^{\dagger}=1\right.}
\end{aligned}
$$

Singular value decomposition

$$
\begin{aligned}
& {\left[\begin{array}{cccc}
\cdot & \cdot & \cdot & \cdot \\
\cdot & A & \cdot & \cdot
\end{array}\right]=\left[\begin{array}{cc}
\cdot & \cdot \\
\cdot & U \\
\cdot & \cdot \\
\cdot & \cdot
\end{array}\right]} \\
& {\left[\begin{array}{cc}
\Sigma_{1} & 0 \\
0 & \Sigma_{2}
\end{array}\right]\left[\begin{array}{cccc}
\cdot & \cdot & \cdot & \cdot \\
\cdot & V^{\dagger} & \cdot & \cdot
\end{array}\right]} \\
& U^{\dagger} U=1, \quad V^{\dagger} V=1 \\
& U U^{\dagger} \neq 1, \quad V V^{\dagger} \neq 1, \quad U^{\dagger} V \neq 1
\end{aligned}
$$

Singular value decomposition (SVD)

$$
\begin{array}{ll}
A=U \Sigma V^{\dagger} & \mathrm{d}_{1} \\
U^{\dagger} U=1 & =\square \\
V^{\dagger} V=1 & \square
\end{array}
$$

Reshape between tensor and matrix

(just relabel the indices)
$\mathrm{d}_{1}\left[\begin{array}{ll}a_{00} & a_{01} \\ a_{11} & a_{10}\end{array}\right] \longmapsto \begin{aligned} & 00 \rightarrow 0 \\ & 01 \rightarrow 1 \\ & \mathrm{~d}_{2}\end{aligned} \quad \longrightarrow\left[\begin{array}{c}a_{0} \\ a_{1} \\ a_{2} \\ a_{3}\end{array}\right] \quad \begin{aligned} & \\ & 11 \rightarrow 3\end{aligned} \quad \begin{aligned} & \mathrm{d}_{1} \times \mathrm{d}_{2}\end{aligned}$

Reshape between tensor and matrix

tensor

matrix

$$
x \leq \min \left(d_{1} d_{2}, d_{3}\right)
$$

Transform a many-body state to an MPS

Transform a many-body state to an MPS

Transform a many-body state to an MPS

Transform a many-body state to an MPS

Move the orthogonality center

Mixed canonical form

Move the orthogonality center

Mixed canonical form

Right canonical form

Not so useful

Restrict the bond (or virtual) dimension

In practice, restrict the maximal virtual dimension to χ

What dose it mean physically ...

Restrict the bond (or virtual) dimension

In practice, restrict the maximal virtual dimension to χ

What dose it mean physically ...

Restrict the entanglement!

(Why ...?)

Entanglement between two subsystems

Reduced density matrix
$\rho_{A}=\operatorname{Tr}_{B}(\rho)=\operatorname{Tr}_{B}(|\psi\rangle\langle\psi|)=\sum_{\phi}\langle\phi \mid \psi\rangle\langle\psi \mid \phi\rangle$
Entanglement entropy
$S_{A}=-\operatorname{Tr}\left(\rho_{A} \log \rho_{A}\right) \leq \log D$

Ex: $\uparrow \downarrow$

$$
S_{A}=0
$$

$$
\frac{1}{\sqrt{2}}(\uparrow \downarrow-\downarrow \uparrow) \quad S_{A}=\log 2
$$

Orthogonal form and the reduce density matrix

χ is also the dimension of ρ_{A}

$$
S_{A}=-\operatorname{Tr}\left(\rho_{A} \log \rho_{A}\right) \leq \log \chi
$$

Why are the low-entanglement states important?

Area law

Gapped ground states of local Hamiltonians
$S_{A} \propto$ boundary
(Due to the local correlation)

MPS obeys 1D area law
many-body Hilbert space

Volume law
In general, $\quad S \propto$ volume

Ex: $\rho \propto e^{-\beta H}$

Matrix product operator (MPO)

Ex: Transverse-field Ising model

$$
\begin{aligned}
& \hat{H}=-\sum_{i=1}^{N-1} \hat{S}_{i}^{x} \hat{S}_{i+1}^{x}-h_{z} \sum_{i=1}^{N} \hat{S}_{i}^{z}, \quad \hat{S}^{z}=\frac{1}{2}\left[\begin{array}{cc}
1 & 0 \\
0 & -1
\end{array}\right], \quad \hat{S}^{x}=\frac{1}{2}\left[\begin{array}{ll}
0 & 1 \\
1 & 0
\end{array}\right] \\
& \hat{H}=L_{0} M_{1} M_{2} \cdots M_{N} R_{0}
\end{aligned}
$$

$L_{0}=\left[\begin{array}{lll}0 & 0 & 1\end{array}\right], \quad M_{i}=\left[\begin{array}{ccc}\hat{I}_{i} & & \\ \hat{S}_{i}^{x} & 0 & \\ -h_{z} \hat{S}_{i}^{z} & -\hat{S}_{i}^{x} & \hat{I}_{i}\end{array}\right], \quad R_{0}=\left[\begin{array}{l}1 \\ 0 \\ 0\end{array}\right]$

Application:

Density Matrix Renormalization Group (DMRG)

Variationally finding the ground state

Optimize the MPS tensors one by one

Physical meaning of the orthogonal form

$$
\text { If } \chi^{\prime}<\chi d, \text { Rotation + truncate basis }
$$

$山$ is a wavefunction of the whole system in the reduced basis

DMRG algorithm

1. Prepare an initial MPS in the left canonical form

ヘerthogonality center

DMRG algorithm

2. Define the effective Hamiltonian

reduced basis for sites from 1 to $\mathrm{N}-2$

The Hamiltonian of the whole system
in the reduced Hilbert space

DMRG algorithm

3. Solve the ground state in the reduced Hilbert space

$$
\hat{H}_{\mathrm{eff}}|\phi\rangle=E_{0}|\phi\rangle
$$

$=E_{0} \longrightarrow \square$

DMRG algorithm

4. SVD on $|\phi\rangle$

Truncate the virtual dimension based on the singular values

Rotate to the eigenbasis of $\rho_{A} \quad\left(\rho_{B}\right)$

Explain:

DMRG algorithm

5. Absorb the diagonal matrix to the left

6. Optimize the next two sites (and so on...)

Computational complexity

matrix multiplication

Complexity: $d_{1} \times d_{2} \times d_{3}$
(Number of real-number multiplications)

Computational complexity

Complexity: ?

Computational complexity

L:

$\chi^{3} d D$

$X^{2} d^{2} D^{2}$

$\chi^{3} d D$

DMRG complexity $\propto L \chi^{3}$

Correlation function

$$
C(r)=\left\langle O_{i} O_{i+r}\right\rangle-\left\langle O_{i}\right\rangle\left\langle O_{i+r}\right\rangle
$$

Assume all the tensors are the same \rightarrow uniform MPS (translational invariant)

Transfer matrix E
"Transfer matrix" E_{O}

$$
\left\langle O_{i} O_{i+r}\right\rangle=\operatorname{Tr}\left(E^{\infty} E_{O} E^{r-1} E_{O} E^{\infty}\right)
$$

Transfer matrix

$$
\begin{gathered}
E^{r}=\left[\begin{array}{l|l|l}
\overrightarrow{v_{1}} & \overrightarrow{v_{2}} & \cdots
\end{array}\right]\left[\begin{array}{lll}
\lambda_{1}^{r} & & \\
& \lambda_{2}^{r} & \\
& & \ddots
\end{array}\right]\left[\begin{array}{c}
\frac{\overrightarrow{v_{1}}}{\overrightarrow{v_{2}}} \\
\vdots
\end{array}\right] \\
\\
\\
\\
\\
\\
\\
\end{gathered} \lambda_{1}^{r}\left[\overrightarrow{v_{1}}\right]\left[\begin{array}{ll}
\overrightarrow{v_{1}} &]=\lambda_{1}^{r} \mid v_{1}\right)\left(v_{1} \mid\right.
\end{array}\right.
$$

$$
\langle\psi \mid \psi\rangle=\operatorname{Tr}
$$

$$
\Longleftrightarrow \quad \lambda_{1}=1 \quad \text { (normalization condition) }
$$

Correlation function

For correlation function, we need to consider to the second order

$$
\begin{aligned}
& \left.\mathrm{E}^{r} \approx \mid v_{1}\right)\left(v_{1}\left|+\lambda_{2}^{r}\right| v_{2}\right)\left(v_{2} \mid\right. \\
& \left.\begin{array}{rl}
\left\langle O_{i} O_{i+r}\right\rangle & =\operatorname{Tr}\left(E^{\infty} E_{O} E^{r-1} E_{O} E^{\infty}\right) \\
& =\left(v_{1}\left|E_{O}\left[\mid v_{1}\right)\left(v_{1}\left|+\lambda_{2}^{r-1}\right| v_{2}\right)\left(v_{2} \mid\right] E_{O}\right| v_{1}\right) \\
& =(\underbrace{\left(v_{1}\left|E_{O}\right| v_{1}\right)\left(v_{1}\left|E_{O}\right| v_{1}\right)}_{\left\langle O_{i}\right\rangle\left\langle O_{i+r}\right\rangle}+\lambda_{2}^{r-1}\left(v_{1}\left|E_{O}\right| v_{2}\right)\left(v_{2}\left|E_{O}\right| v_{1}\right)
\end{array}\right\} \text { decay exponentially with } r
\end{aligned}
$$

$$
C(r)=\left\langle O_{i} O_{i+r}\right\rangle-\left\langle O_{i}\right\rangle\left\langle O_{i+r}\right\rangle \propto e^{-r / \xi}
$$

$$
\xi \equiv-1 / \log \lambda_{2}
$$

MPS has finite correlation length. (gapped ground state)

Correlation function

Other tensor networks

2D systems

MPS

MERA

and many others...

Measurement

On-site observable $\left\langle O_{i}\right\rangle$

- 臣

