Parallel syndrome extraction with shared flag qubits for CSS codes of distance three

arXiv:2208.00581

Ching-Yi Lai

Institute of Communications Engineering National Yang Ming Chiao Tung University

Joint work with Pei-Hao Liou (NYCU)

1. Flagged fault-tolerant quantum computation

2. Parallel syndrome extraction with shared flag qubits for general CSS codes of distance three.

3. Numerical results

4. Conclusion

Flagged fault-tolerant quantum computation

Postulate The evolution of a quantum state in a closed system is described by a unitary operator.

A quantum algorithm can be implemented in a quantum circuit consisting of quantum wires, single-qubit gates, and two-qubit gates.

► Any quantum computation can be implemented by a universal set of elementary gates with arbitrary accuracy. Ex: {*H*, *S*, *CNOT*, *T*}.

Google's Quantum Chip: Sycamore

F. Arute et al., "Quantum supremacy using a programmable superconducting processor," Nature 574, 505–510 (2019)

Average error	Isolated	Simultaneous
Single-qubit (e ₁)	0.15%	0.16%
Two-qubit (e ₂)	0.36%	0.62%
Two-qubit, cycle (e _{2c})	0.65%	0.93%
Readout (e,)	3.1%	3.8%

Pauli and measurement errors

 $\label{eq:physical error rate is about 10^{-2} \sim 10^{-3}.$

The Pauli matrices

$$\{I = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}, X = \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}, Z = \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix}, Y = \begin{pmatrix} 0 & -i \\ i & 0 \end{pmatrix} = iXZ\}$$

form a basis for the space of linear operators on a single-qubit $\mathcal{L}(\mathbb{C}^2)$.

Bit flip
$$X|0\rangle = |1\rangle, \ X|1\rangle = |0\rangle$$
Phase flip $Z|0\rangle = |0\rangle, \ Z|1\rangle = -|1\rangle$

- (independent) Depolarizing channel with parameter ϵ :
 - no error (*I*) with probability 1ϵ
 - X with probability $\epsilon/3$
 - Y with probability $\epsilon/3$
 - Z with probability $\epsilon/3$

- ▶ *n*-fold Pauli operators { $M_1 \otimes M_2 \otimes \cdots \otimes M_n : M_i \in \{I, X, Y, Z\}$.
- $X \otimes X \otimes Y \otimes Z \otimes I \otimes Z = XXYZI = X_1X_2Y_3Z_4Z_6.$
- Every *n*-fold Pauli operator has eigenvalue ± 1 .
- > Two Pauli operators either commute or anticommute with each other.

• $S = \langle g_1, g_2, \cdots, g_m \rangle$: an Abelian subgroup of $\{I, X, Y, Z\}^n$ and $-I \notin S$.

 $\langle g_i, g_j \rangle = 0.$

An [[n, k, d]] quantum stabilizer code C(S) defined by stabilizer group S is the 2^k-dimensional subspace of the *n*-qubit state space C^{2ⁿ} fixed by S so that any error E ∈ {I, X, Y, Z}^{⊗n} of wt(E) ≤ d − 1 is detectable.

$$\mathcal{C}(\mathcal{S}) = \{ |\psi
angle \in \mathbb{C}^{2^n}: \ oldsymbol{g} |\psi
angle = |\psi
angle \ , orall oldsymbol{g} \in \mathcal{S} \}.$$

An error *E* can be detected if it anticommutes with some $g_j \in S$:

$$g_j(E|\psi\rangle) = -Eg_j|\psi\rangle = -(E|\psi\rangle).$$

▶ The error syndrome of *E* is a binary (n - k)-tuple of the measurement outcome of g_1, \ldots, g_m .

 The [7, 4, 3] Hamming code is dual-containing and its parity check matrix is

	[1	0	1	0	1	0	1]
H =	0	1	1	0	0	1	1
	0	0	0	1	1	1	1

Rows of the stabilizer check matrix:

$g_1 = XIXIXIX$	$g_4 = Z I Z I Z I Z$
$g_2 = IXXIIXX$	$g_5 = IZZIIZZ$
$g_3 = IIIXXXX$	$g_6 = IIIZZZZ$

(Calderbank-Shor-Steane (CSS) Code)

Any single-qubit Pauli error has a unique error syndrome and can be corrected.

	Z_1	Z_2	Z_3	Z_4	Z_5	Z_6	Z_7			<i>X</i> ₁	<i>X</i> ₂	<i>X</i> ₃	X_4	X 5	X_6	X_7
g_1	1	0	1	0	1	0	1	-	g_4	1	0	1	0	1	0	1
g_2	0	1	1	0	0	1	1		g_5	0	1	1	0	0	1	1
g_3	0	0	0	1	1	1	1		g_6	0	0	0	1	1	1	1

Fault-Tolerant Syndrome Measurement

- Quantum states are vulnerable and quantum gates are faulty. Location failures may occur.
- Errors propagate through CNOT gates.

 $|0\rangle$

A location failure in a procedure is said to be a bad location failure if one of its location failures may evolve into an uncorrectable error.

A procedure is fault-tolerant if it has no bad location failures.

To measure a stabilizer of weight-w, one may use the Shor syndrome extraction with a weight-w cat state.

Fault-tolerant quantum computation with flag qubits

- Circuits for measuring the stabilizer XXXX. (A) Unflagged syndrome measurement. (B) Flagged syndrome measurement.
 - R. Chao and B. W. Reichardt, "Quantum error correction with only two extra qubits," Phys. Rev. Lett. 121, 050502 (2018).
 - R. Chao and B. W. Reichardt, "Fault-tolerant quantum computation with few qubits," npj Quantum Inf. 4, 42 (2018).
 - Only one additional ancilla qubit (called flag) is required for fault-tolerant syndrome extraction.
- When a flag qubit rises, we know that there is some high-weight error in the codeword. Then we perform a complete unflagged syndrome extraction and choose the most likely error accordingly. (Usually a lookup table is used.)

However, the circuit depth is increased.

Parallel syndrome extraction for the Steane code with shared flag qubits

B. W. Reichardt, "Fault-tolerant quantum error correction for Steane's seven-qubit color code with few or no extra qubits," Quantum Sci. Tech. 6, 015007 (2020)

- Parallel syndrome extraction circuits for the [[7, 1, 3]] code: $X_1X_3X_5X_7$ (red), $Z_2Z_3Z_6Z_7$ (blue), and $Z_4Z_5Z_6Z_7$ (green).
- A total of three ancilla qubits are used in the measurement of three stabilizers. No additional ancillas are required.

Failure error	Data error	$m_{1,2,3}$	m'_{123456}	m_{456}	m''_{123456}	X_a	$X_{1,3,5,7}$	000	-	-	-	
X_A	X_1	000	-	100	000100	X_b	$X_{1,3,7}$	010	010100	-	-	
X_B	X_3	001	001100	-	-	X_c	$X_{1,3,7}$	011	010100	-	-	
X_C	X_5	010	010100	-	-	X_d	$X_{3,7}$	011	010000	-	-	
X_D	X_7	000	-	100	011100	X_e	X_7	010	011100	-	-	
X_E	X_2	001	001000	-	-	X_f	X_7	000	-	100	011100	
X_F	X_3	001	001100	-	-	X_{g}	No error	010	000000	-	-	
X_G	X_6	011	011000	-	-	X_h	No error	010	000000	-	-	
X_H	X_7	001	011100	-	-	X_i	No error	010	000000	-	-	
X_I	X_4	010	010000	-	-	X_j	No error	010	000000	-	-	
X_J	X_5	010	010100	-	-	X_k	No error	010	000000	-	-	
X_K	X_6	010	011000	-	-	X_l	No error	001	000000	-	-	
X_L	X_7	011	011100	-	-	X_m	No error	001	000000	-	-	
Z_A	Z_1	100	100000	-	-	X_n	No error	001	000000	-	-	
Z_B	Z_3	100	100001	-	-	X_o	No error	001	000000	-	-	
Z_C	Z_5	100	100010	-	-	X_p	No error	001	000000	-	-	
Z_D	Z_7	100	100011	-	-	Z_a	No error	100	000000	-	-	
Z_E	Z_2	000	-	001	000001	Z_b	No error	100	000000	-	-	
Z_F	Z_3	000	-	001	100001	Z_c	No error	100	000000	-	-	
Z_G	Z_6	000	-	011	000011	Z_d	No error	100	000000	-	-	
Z_H	Z_7	100	100011	-	-	Z_e	No error	100	000000	-	-	
Z_I	Z_4	000	-	010	000010	Z_{f}	No error	100	000000	-	-	
Z_J	Z_5	000	-	010	100010	Z_{g}	$Z_{4,5,6,7}$	000	-	-	-	
Z_K	Z_6	000	-	011	000011	Z_h	$Z_{4,5,6}$	100	100011	-	-	
Z_L	Z_7	100	100011	-	-	Z_i	$Z_{4,6}$	100	000001	-	-	
						Z_{j}	Z_6	100	000011	-	-	
						Z_k	Z_6	000	-	011	000011	
						Z_l	$Z_{2,3,6,7}$	000	-	-	-	
						Z_m	$Z_{2,3,7}$	000	-	011	000011	
						Z_n	$Z_{2,3,7}$	100	000011	-	-	
						Z_o	$Z_{3,7}$	100	000010	-	-	
						Z_p	Z_7	000	-	011	100011	

16

Our procedure for general CSS codes of distance three.

Flagged syndrome extraction with shared flags

standard flagged syndrome extraction circuit

- Let $C(g_i)$ denote the syndrome extraction circuit for g_i .
- Let $B(C(g_i))$ be the number of locations that will trigger the flag qubit.
- Lemma 1 In $C(g_i)$, each bad location failures leads to residue errors of the same type as g_i , up to one Pauli error of weight one.

Lemma 2 Suppose that g is an X- or Z-stabilizer of weight w. Then

 $B(C(g_i)) \leq w-1$.

▶ Suppose that g_1 and g_2 are stabilizers of the same type (X or Z). Let $C(g_1) \cup C(g_2)$ be the joint circuit of $C(g_1)$ and $C(g_2)$ with one shared flag qubit and the CNOTs connecting the ancillas and the flag qubit are placed in sequence.

Lemma 3

 $B(C(g_1) \cup C(g_2)) = B(C(g_1)) + B(C(g_2)).$

For Shor's [[9,1,3]] code, the syndrome bits for X₁X₂X₃X₄X₅X₆ (blue) and X₄X₅X₆X₇X₈X₉ (red) are extracted with one shared flag qubit.

- Lemma 4 Suppose that $g_{j_1}, g_{j_2}, \ldots, g_{j_s}$ are stabilizers of the same type and $C(g_{j_1}), C(g_{j_2}), \ldots, C(g_{j_s})$ can be performed in parallel using one shared flag qubit. Then the following conditions hold.
 - 1. Each distinct bad location failure has a unique error syndrome when a flag rises.

2.
$$\begin{cases} B(\cup_i C(g_{j_i})) = \sum_{i=1}^s B(C(g_{j_i})) \le 2^a, & \text{if } g_{j_1}, \dots, g_{j_s} \text{ are } X\text{-type}; \\ B(\cup_i C(g_{j_i})) = \sum_{i=1}^s B(C(g_{j_i})) \le 2^b, & \text{if } g_{j_1}, \dots, g_{j_s} \text{ are } Z\text{-type}, \end{cases}$$

assuming that there are b X-type stabilizers and a Z-type stabilizers.

Example: Shor's [[9, 1, 3]] code

Shor's [[9,1,3]] code is defined by stabilizers

$$g_1 = Z_1 Z_2, \ g_2 = Z_2 Z_3, \ g_3 = Z_4 Z_5, \qquad g_4 = Z_5 Z_6, \ g_5 = Z_7 Z_8, \ g_6 = Z_8 Z_9, g_7 = X_1 X_2 X_3 X_4 X_5 X_6, \qquad g_8 = X_4 X_5 X_6 X_7 X_8 X_9.$$
(1)

No flag qubit is required for the measurement of Z-stabilizers.

[15,1,3] Reed-Muller code is defined by stabilizers

$$\begin{array}{l} g_1 = Z_{1,3,5,7,9,11,13,15}, \ g_6 = Z_{5,7,13,15}, \ g_{10} = Z_{9,11,13,15} \\ g_2 = Z_{2,3,6,7,10,11,14,15}, \ g_5 = Z_{3,7,11,15}, \ g_8 = Z_{10,11,14,15}, \\ g_3 = Z_{4,5,6,7,12,13,14,15}, \ g_7 = Z_{6,7,14,15}, \\ g_4 = Z_{8,9,10,11,12,13,14,15}, \ g_{12} = Z_{12,13,14,15}, \\ g_{11} = X_{1,3,5,7,9,11,13,15}, \ g_{12} = X_{2,3,6,7,10,11,14,15}, \\ g_{13} = X_{4,5,6,7,12,13,14,15}, \ g_{14} = X_{8,9,10,11,12,13,14,15}. \end{array}$$

- 4 X-stabilizers and 10 Z-stabilizers, each of weight 4 or 8
- Distinct syndromes for Z errors: 2⁴ = 16. So at most 2 or 3 Z-stabilizers can be measured in parallel with one shared flag.
- Distinct syndromes for X errors: $2^{10} = 1024$. So the 4 X-stabilizers can be measured in parallel with one shared flag.

Numerical results

- The error threshold for a procedure is the (physical) error rate below which the logical error rate of the procedure would be lower than the error rate.
- Computation Error threshold: quantum computation can be implemented with arbitrary accuracy provided that the error rate of each physical gate is below a threshold.
- Memory Error threshold: quantum memory can be maintained with an arbitrarily long duration provided that the error rate of each physical gate is below a threshold.

Surface codes have the highest known simulated memory error threshold of about 0.1 ~ 0.5%. arXiv:0905.0531, arXiv:1208.0928

- Qubits are located at the white circles.
- The stabilizers (black circles) are of low-weight 4 or 3 and have local support.

In C(g_i), each bad location failures leads to residue errors of the same type as g_i, up to one Pauli error of weight one. Therefore, a complete unflagged syndrome extraction circuit is not necessary.

Standard decoder						
	$\gamma = 0$	$\gamma = 1$				
Scheme	Memory pse	udo-threshold				
[[9, 1, 3]] Parallel (comp.)	$4.56 imes 10^{-3}$	7.13×10^{-4}				
[[9, 1, 3]] Parallel (Alg.)	$5.13 imes 10^{-3}$	$8.08 imes 10^{-4}$				
Scheme	Computation pseudo-thresho					
[[9, 1, 3]] Parallel (comp.)	6.61×10^{-4}	1.6×10^{-4}				
[[9, 1, 3]] Parallel (Alg.)	$8.56 imes 10^{-3}$	$1.98 imes 10^{-4}$				
Two-step decoder						
Two-s	tep decoder					
Two-s	tep decoder $\gamma = 0$	$\gamma = 1$				
Two-s	$\begin{array}{c} tep \ decoder \\ \gamma = 0 \\ \\ Memory \ pse \end{array}$	$\gamma = 1$ udo-threshold				
Two-s Scheme [[9, 1, 3]] Parallel (comp.)	tep decoder $\gamma = 0$ Memory pse 7.49×10^{-3}	$\gamma = 1$ udo-threshold $1.95 imes 10^{-3}$				
Two-s Scheme [[9, 1, 3]] Parallel (comp.) [[9, 1, 3]] Parallel (Alg.)	$\begin{array}{c} \text{tep decoder} \\ \gamma = 0 \\ \text{Memory pse} \\ 7.49 \times 10^{-3} \\ 7.74 \times 10^{-3} \end{array}$	$\gamma = 1$ udo-threshold $1.95 imes 10^{-3}$ $2.01 imes 10^{-3}$				
Two-s Scheme [[9, 1, 3]] Parallel (comp.) [[9, 1, 3]] Parallel (Alg.) Scheme	tep decoder $\gamma = 0$ Memory pse 7.49 × 10 ⁻³ 7.74 × 10 ⁻³ Computation pse	$\gamma = 1$ udo-threshold 1.95×10^{-3} 2.01×10^{-3} seudo-threshold				
Two-s Scheme [[9, 1, 3]] Parallel (comp.) [[9, 1, 3]] Parallel (Alg.) Scheme [[9, 1, 3]] Parallel (comp.)	$\begin{array}{l} \mbox{tep decoder} \\ \hline \gamma = 0 \\ \mbox{Memory pse} \\ \hline 7.49 \times 10^{-3} \\ \hline 7.74 \times 10^{-3} \\ \mbox{Computation ps} \\ \hline 1.48 \times 10^{-3} \end{array}$	$\gamma = 1$ udo-threshold 1.95×10^{-3} 2.01×10^{-3} seudo-threshold 2.89×10^{-4}				

Table: Comparisons of the two procedures for unflagged syndrome extraction. (Alg.) denotes the X and Z separated unflagged syndrome extraction, while (comp.) denotes a complete unflagged syndrome extraction.

> γ : the ratio of memory error rate to gate error rate.

	$\gamma = 0$	$\gamma = 1$
Scheme	Memory	pseudo-threshold
[[7, 1, 3]] Flag	$1.32 imes 10^{-3}$	$2.97 imes 10^{-5}$
[[7, 1, 3]] Flag	-	$3.39 imes 10^{-5}~[ext{CB18}]^{*}$
[[7, 1, 3]] Parallel [Rei20]	$1.29 imes 10^{-3}$	$1.75 imes10^{-4}$
[[9, 1, 3]] Flag	$7.97 imes 10^{-3}$	$6.03 imes10^{-4}$
[[9, 1, 3]] Parallel	$5.13 imes10^{-3}$	$8.08 imes10^{-4}$
Scheme	Computatio	on pseudo-threshold
[[7, 1, 3]] Flag	$2.03 imes 10^{-4}$	$3.95 imes 10^{-6}$
[[7, 1, 3]] Parallel [Rei20]	$1.73 imes 10^{-4}$	$3.05 imes10^{-5}$
[[9, 1, 3]] Flag	$9.83 imes 10^{-4}$	$1.42 imes10^{-4}$
[[9, 1, 3]] Parallel	$8.56 imes10^{-4}$	$1.98 imes10^{-4}$

Table: Memory and computation pseudo-thresholds using the standard decoder.

*: A two-round decoder is used.

> γ : the ratio of memory error rate to gate error rate.

	$\gamma = 0$	$\gamma = 1$
Scheme	Memory pse	udo-threshold
[[9, 1, 3]] Flag	$8.04 imes10^{-3}$	1.56×10^{-3}
[[9, 1, 3]] Parallel	$7.74 imes 10^{-3}$	2.01×10^{-3}
Bacon-Shor-13 [LMB18]	$8.70 imes10^{-3}$	$1.19 imes 10^{-3}$
Scheme	Computation p	seudo-threshold
[[9, 1, 3]] Flag	$1.22 imes 10^{-3}$	$1.76 imes 10^{-4}$
[[9, 1, 3]] Parallel	$1.69 imes10^{-3}$	$3.02 imes10^{-4}$

Table: Memory and computation pseudo-thresholds using the two-step decoder.

M. Li, D. Miller, and K. R. Brown, "Direct measurement of Bacon-Shor code stabilizers," Phys. Rev. A 98, 050301 (2018).

> γ : the ratio of memory error rate to gate error rate.

- General framework for quantum codes of distance larger than three?
 - R. Chao and B. W. Reichardt, "Flag fault-tolerant error correction for any stabilizer code," PRX Quantum 1, 010302 (2020).
 - C. Chamberland and M. E. Beverland, "Flag fault-tolerant error correction with arbitrary distance codes," Quantum 2, 53 (2018).
- General decoding algorithms for flagged quantum error correction, other than the lookup table.
- Flagged syndrome extraction for subsystem codes.