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Flagged fault-tolerant quantum computation
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Quantum Circuits

Postulate The evolution of a quantum state in a closed system is described by a unitary operator.

▶ A quantum algorithm can be implemented in a quantum circuit consisting of quantum wires,
single-qubit gates, and two-qubit gates.

▶ Any quantum computation can be implemented by a universal set of elementary gates with
arbitrary accuracy. Ex: {H,S,CNOT ,T}.
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Google’s Quantum Chip: Sycamore

F. Arute et al., “Quantum supremacy using a programmable superconducting processor," Nature 574, 505–510 (2019)

Physical error rate is about
10−2 ∼ 10−3.
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Discretization of the Errors

▶ The Pauli matrices

{I =
(

1 0
0 1

)
,X =

(
0 1
1 0

)
,Z =

(
1 0
0 −1

)
,Y =

(
0 −i
i 0

)
= iXZ}

form a basis for the space of linear operators on a single-qubit L(C2).

Bit flip X |0⟩ = |1⟩, X |1⟩ = |0⟩
Phase flip Z |0⟩ = |0⟩, Z |1⟩ = −|1⟩

▶ (independent) Depolarizing channel with parameter ϵ:
- no error (I) with probability 1 − ϵ
- X with probability ϵ/3
- Y with probability ϵ/3
- Z with probability ϵ/3
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n-fold Pauli operator

▶ n-fold Pauli operators {M1 ⊗ M2 ⊗ · · · ⊗ Mn : Mi ∈ {I,X ,Y ,Z}.

- X ⊗ X ⊗ Y ⊗ Z ⊗ I ⊗ Z = XXYZI = X1X2Y3Z4Z6.

▶ Every n-fold Pauli operator has eigenvalue ±1.

▶ Two Pauli operators either commute or anticommute with each other.
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Quantum Stabilizer Codes

▶ S = ⟨g1, g2, · · · , gm⟩: an Abelian subgroup of {I,X ,Y ,Z}n and −I /∈ S.

⟨gi , gj⟩ = 0.

▶ An [[n, k , d ]] quantum stabilizer code C(S) defined by stabilizer group S is the 2k -dimensional
subspace of the n-qubit state space C2n

fixed by S so that any error E ∈ {I,X ,Y ,Z}⊗n of
wt(E) ≤ d − 1 is detectable.

C(S) = {|ψ⟩ ∈ C2n
: g|ψ⟩ = |ψ⟩ , ∀g ∈ S}.

▶ An error E can be detected if it anticommutes with some gj ∈ S:

gj(E |ψ⟩) = −Egj |ψ⟩ = − (E |ψ⟩).

▶ The error syndrome of E is a binary (n − k)-tuple of the measurement outcome of g1, . . . , gm.
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The 7-qubit Steane ode of distance three

▶ The [7, 4, 3] Hamming code is
dual-containing and its parity check matrix is

H =

1 0 1 0 1 0 1
0 1 1 0 0 1 1
0 0 0 1 1 1 1

 .
▶ Rows of the stabilizer check matrix:

g1 =XIXIXIX g4 = ZIZIZIZ

g2 =IXXIIXX g5 = IZZIIZZ

g3 =IIIXXXX g6 = IIIZZZZ

(Calderbank-Shor-Steane (CSS) Code)

1 2
3

4

5 6

7

▶ Any single-qubit Pauli error has a unique error syndrome and can be corrected.

Z1 Z2 Z3 Z4 Z5 Z6 Z7

g1 1 0 1 0 1 0 1
g2 0 1 1 0 0 1 1
g3 0 0 0 1 1 1 1

X1 X2 X3 X4 X5 X6 X7

g4 1 0 1 0 1 0 1
g5 0 1 1 0 0 1 1
g6 0 0 0 1 1 1 1 9



Syndrome Measurement

▶ The circuit for the measurement of ZZZZ

1 2
3

4

5 6

7
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Fault-Tolerant Syndrome Measurement

▶ Quantum states are vulnerable and quantum gates are faulty. Location failures may occur.
▶ Errors propagate through CNOT gates.

X • • X • • Z
= =

X Z Z

▶ A location failure in a procedure is said to be a bad location
failure if one of its location failures may evolve into an
uncorrectable error.

▶ A procedure is fault-tolerant if it has no bad location failures.

▶ To measure a stabilizer of weight-w , one may use the Shor
syndrome extraction with a weight-w cat state.
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Fault-tolerant quantum computation with flag qubits

12



Flagged syndrome extraction

| +〉 | +〉 
X

|0〉 

(A) (B)

X XX

Z

X

X

X

X

X

▶ Circuits for measuring the stabilizer XXXX . (A) Unflagged syndrome measurement. (B) Flagged
syndrome measurement.

– R. Chao and B. W. Reichardt, “Quantum error correction with only two extra qubits," Phys. Rev. Lett. 121, 050502
(2018).

– R. Chao and B. W. Reichardt, “Fault-tolerant quantum computation with few qubits," npj Quantum Inf. 4, 42 (2018).

– Only one additional ancilla qubit (called flag) is required for fault-tolerant syndrome extraction.
▶ When a flag qubit rises, we know that there is some high-weight error in the codeword. Then we

perform a complete unflagged syndrome extraction and choose the most likely error accordingly.
(Usually a lookup table is used. )
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▶ However, the circuit depth is increased.
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Parallel syndrome extraction for the Steane code with shared flag qubits

▶ B. W. Reichardt, “Fault-tolerant quantum error correction for Steane’s seven-qubit color code
with few or no extra qubits," Quantum Sci. Tech. 6, 015007 (2020)
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– Parallel syndrome extraction circuits for the [[7, 1, 3]] code: X1X3X5X7 (red), Z2Z3Z6Z7 (blue), and Z4Z5Z6Z7 (green).
– A total of three ancilla qubits are used in the measurement of three stabilizers. No additional ancillas are required.
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Our procedure for general CSS codes of distance three.

17



Flagged syndrome extraction with shared flags

▶ standard flagged syndrome extraction circuit

Z|0⟩ 

 |+⟩ X

                                                                       
𝑤−2

 
a b e f gc d

… 

… h i

– Let C(gi ) denote the syndrome extraction circuit for gi .

– Let B(C(gi )) be the number of locations that will trigger the flag qubit.

Lemma 1 In C(gi ), each bad location failures leads to residue errors of the same type as gi , up to one Pauli error
of weight one.

Lemma 2 Suppose that g is an X- or Z-stabilizer of weight w . Then
B(C(gi )) ≤ w − 1 .
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▶ Suppose that g1 and g2 are stabilizers of the same type (X or Z ). Let C(g1) ∪ C(g2) be the
joint circuit of C(g1) and C(g2) with one shared flag qubit and the CNOTs connecting the
ancillas and the flag qubit are placed in sequence.

Lemma 3
B(C(g1) ∪ C(g2)) = B(C(g1)) + B(C(g2)).

– For Shor’s [[9,1,3]] code, the syndrome bits for X1X2X3X4X5X6 (blue) and X4X5X6X7X8X9 (red) are
extracted with one shared flag qubit.
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Lemma 4 Suppose that gj1 , gj2 , . . . , gjs are stabilizers of the same type and C(gj1), C(gj2), . . . , C(gjs ) can
be performed in parallel using one shared flag qubit. Then the following conditions hold.

1. Each distinct bad location failure has a unique error syndrome when a flag rises.

2.

{
B(∪i C(gji )) =

∑s
i=1 B(C(gji )) ≤ 2a, if gj1 , . . . , gjs are X -type;

B(∪i C(gji )) =
∑s

i=1 B(C(gji )) ≤ 2b, if gj1 , . . . , gjs are Z -type,

assuming that there are b X -type stabilizers and a Z -type stabilizers.
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Example: Shor’s [[9,1,3]] code

▶ Shor’s [[9,1,3]] code is defined by stabilizers

g1 =Z1Z2, g2 = Z2Z3, g3 = Z4Z5, g4 =Z5Z6, g5 = Z7Z8, g6 = Z8Z9,

g7 =X1X2X3X4X5X6, g8 =X4X5X6X7X8X9.
(1)
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– No flag qubit is required for the measurement of Z -stabilizers . 21



Example: [[15,1,3]] Reed-Muller code

[15,1,3 ] Reed-Muller code is defined by stabilizers

g1 =Z1,3,5,7,9,11,13,15, g6 = Z5,7,13,15, g10 = Z9,11,13,15

g2 =Z2,3,6,7,10,11,14,15, g5 = Z3,7,11,15, g8 = Z10,11,14,15,

g3 =Z4,5,6,7,12,13,14,15, g7 = Z6,7,14,15,

g4 =Z8,9,10,11,12,13,14,15, g9 = Z12,13,14,15,

g11 =X1,3,5,7,9,11,13,15, g12 = X2,3,6,7,10,11,14,15,

g13 =X4,5,6,7,12,13,14,15, g14 = X8,9,10,11,12,13,14,15.

– 4 X -stabilizers and 10 Z -stabilizers, each of weight 4 or 8

– Distinct syndromes for Z errors: 24 = 16. So at most 2 or 3 Z -stabilizers can be measured in parallel
with one shared flag.

– Distinct syndromes for X errors: 210 = 1024. So the 4 X -stabilizers can be measured in parallel with
one shared flag.
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Numerical results
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Threshold Theorem

▶ The error threshold for a procedure is the (physical) error rate below which the logical error rate
of the procedure would be lower than the error rate.

▶ Computation Error threshold: quantum computation can be implemented with arbitrary accuracy
provided that the error rate of each physical gate is below a threshold.

▶ Memory Error threshold: quantum memory can be maintained with an arbitrarily long duration
provided that the error rate of each physical gate is below a threshold.
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▶ Surface codes have the highest known simulated memory error threshold of about 0.1 ∼ 0.5%.
arXiv:0905.0531, arXiv:1208.0928

- Qubits are located at the white circles.

- The stabilizers (black circles) are of low-weight 4 or 3 and have local support.

26



Comparison of various coding schemes

▶ In C(gi ), each bad location failures leads to residue errors of the same type as gi , up to one Pauli error of weight one.
Therefore, a complete unflagged syndrome extraction circuit is not necessary.

Standard decoder
γ = 0 γ = 1

Scheme Memory pseudo-threshold
[[9, 1, 3]] Parallel (comp.) 4.56 × 10−3 7.13 × 10−4

[[9, 1, 3]] Parallel (Alg.) 5.13 × 10−3 8.08 × 10−4

Scheme Computation pseudo-threshold
[[9, 1, 3]] Parallel (comp.) 6.61 × 10−4 1.6 × 10−4

[[9, 1, 3]] Parallel (Alg.) 8.56 × 10−3 1.98 × 10−4

Two-step decoder
γ = 0 γ = 1

Scheme Memory pseudo-threshold
[[9, 1, 3]] Parallel (comp.) 7.49 × 10−3 1.95 × 10−3

[[9, 1, 3]] Parallel (Alg.) 7.74 × 10−3 2.01 × 10−3

Scheme Computation pseudo-threshold
[[9, 1, 3]] Parallel (comp.) 1.48 × 10−3 2.89 × 10−4

[[9, 1, 3]] Parallel (Alg.) 1.69 × 10−3 3.02 × 10−4

Table: Comparisons of the two procedures for unflagged syndrome extraction. (Alg.) denotes the X and Z
separated unflagged syndrome extraction, while (comp.) denotes a complete unflagged syndrome extraction.

▶ γ: the ratio of memory error rate to gate error rate. 27
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[[7,1,3]] flag,  =1, std

[[7,1,3]] parallel,  =0, std

[[7,1,3]] parallel,  =1, std

[[9,1,3]] flag,  = 0, std

[[9,1,3]] flag,  = 1, std

[[9,1,3]] parallel,  = 0, std

[[9,1,3]] parallel,  = 1, std
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[[7,1,3]] flag,  = 0, std

[[7,1,3]] flag,  = 1, std

[[7,1,3]] parallel,  = 0, std

[[7,1,3]] parallel,  = 1, std

[[9,1,3]] flag,  = 0, std

[[9,1,3]] flag,  = 1, std

[[9,1,3]] parallel,  = 0, std

[[9,1,3]] parallel,  = 1, std

 3.95  10-6

 3.05  10-5

 1.42  10-4

 1.73  10-4

 1.98  10-4

 8.56  10-4

 9.83  10-4

γ = 0 γ = 1
Scheme Memory pseudo-threshold
[[7, 1, 3]] Flag 1.32 × 10−3 2.97 × 10−5

[[7, 1, 3]] Flag - 3.39 × 10−5 [CB18]∗

[[7, 1, 3]] Parallel [Rei20] 1.29 × 10−3 1.75 × 10−4

[[9, 1, 3]] Flag 7.97 × 10−3 6.03 × 10−4

[[9, 1, 3]] Parallel 5.13 × 10−3 8.08 × 10−4

Scheme Computation pseudo-threshold
[[7, 1, 3]] Flag 2.03 × 10−4 3.95 × 10−6

[[7, 1, 3]] Parallel [Rei20] 1.73 × 10−4 3.05 × 10−5

[[9, 1, 3]] Flag 9.83 × 10−4 1.42 × 10−4

[[9, 1, 3]] Parallel 8.56 × 10−4 1.98 × 10−4

Table: Memory and computation pseudo-thresholds
using the standard decoder.

∗: A two-round decoder is used.

▶ γ: the ratio of memory error rate to gate error rate.
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[[9,1,3]] flag,  = 0, 2 step

[[9,1,3]] flag,  = 1, 2 step

[[9,1,3]] parallel,  = 0, 2 step

[[9,1,3]] parallel,  = 1, 2 step

  3.02  10-4

  1.22  10-3

  1.69  10-3

  1.76  10-4

γ = 0 γ = 1
Scheme Memory pseudo-threshold
[[9, 1, 3]] Flag 8.04 × 10−3 1.56 × 10−3

[[9, 1, 3]] Parallel 7.74 × 10−3 2.01 × 10−3

Bacon-Shor-13 [LMB18] 8.70 × 10−3 1.19 × 10−3

Scheme Computation pseudo-threshold
[[9, 1, 3]] Flag 1.22 × 10−3 1.76 × 10−4

[[9, 1, 3]] Parallel 1.69 × 10−3 3.02 × 10−4

Table: Memory and computation pseudo-thresholds
using the two-step decoder.

▶ M. Li, D. Miller, and K. R. Brown, “Direct measurement of
Bacon-Shor code stabilizers," Phys. Rev. A 98, 050301
(2018).

▶ γ: the ratio of memory error rate to gate error rate.
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Future work

▶ General framework for quantum codes of distance larger than three?
– R. Chao and B. W. Reichardt, “Flag fault-tolerant error correction for any stabilizer code," PRX

Quantum 1, 010302 (2020).
– C. Chamberland and M. E. Beverland, “Flag fault-tolerant error correction with arbitrary distance

codes," Quantum 2, 53 (2018).

▶ General decoding algorithms for flagged quantum error correction, other than the lookup table.
▶ Flagged syndrome extraction for subsystem codes.
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