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Relic neutrinos from the Big Bang forming the 
cosmic neutrino (CνB)

CνB has never been observed !
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Various neutrino reactions in thermal equilibrium 
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At least 2 relic neutrino mass states are non-relativistic 
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Cosmic neutrino background (CνB) versus 
cosmic microwave background (CMB)

• CνB took a snapshot of the Universe at a much earlier 
epoch than CMB 

• At least two of the three neutrinos are non-relativistic
• ~20,000,000 of CνB inside each of us at this moment
• Density of CνB is ~100 times of solar neutrinos 

CMB CνB Relation

Temperature 2.73K 1.9 K               
(1.7 x 10-4 eV)

Tν/Tγ = (4/11)1/3 

=0.714
Decoupling at 3.8 x 105 years ~ 1 sec

Density ~ 411 / cm3  ~ 336 / cm3  nν = (9/11) nγ
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Incomplete list of proposed searches for CνB
1) Coherent ν-nucleus scattering 

(Zeldovich and Khlpov, 1981; Smith and Lewin, 1983; Duda, Gelmini, Nussinov, 2001)
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2) Astrophysical search with ultra-high energy neutrinos (Z-resonance)
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3) Capture of CνB on radioactive nuclei (positive Q value) 
(S. Weinberg, 1962)
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Helicity dependence of the ITBD
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Helicity versus chirality for massive neutrino
(where does the 1±β factor come from?)
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• Relic neutrinos decoupled at a temperature of ~1 MeV, and 
were highly relativistic. Neutrinos were produced 
essentially in h =  ̶ 1 state, and antineutrinos in h = +1 state.

• Rotation of neutrino spin due to transverse matter source is 
less than the rotation of neutrino momentum (gravitational 
lensing of neutrino), changing neutrino helicity.

• Dirac neutrino with non-zero magnetic moment will 
precess in galactic or cosmic magnetic fields, changing 
neutrino helicity.
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Time evolution of relic neutrino helicity
(from t ~ 1 sec to t ~ 13.8 billion years)
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spin spin

Helicity reversal 

How would gravity modify the neutrino helicity? 

If a neutrino with negative helicity is emitted upward from
the Earth, it could fall back to the Earth having a positive 
helicity, affecting its weak interaction rate!   
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How would gravity modify the neutrino helicity? 
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Helicity modification of solar neutrinos by Sun’s gravity 

r0 y0

z

0

0
0 0 2 3

( )1( , )
v z

GM r yy r dz
r

θ
γ

∞
= − ∫

Significant helicity modification of heavy particles with spin, e.g., dark photons, from Sun

spatial
distributi

n

on of solar
ne

Averaged over 

a mass
t

 d
 

is
i
t

i
r

n
in b u

n
t

r
i

e
o

s
n

u
 

o

i

m

n

i s
d
 Su

o



15

Neutrino propagation in an expanding universe 
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Rotation of neutrino spin and momentum by 
scalar inhomogeneities 
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Density fluctuation spectrum P(k) 
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Gravitational spin rotation relative to momentum 
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non-relativisticrelativistic Tv

Spin rotation relative to momentum rotation due to gravity 
for relic neutrino mass state 

(depending on neutrino’s mass)
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Rotation of neutrino spins in magnetic fields 
via neutrino magnetic moment

Standard model processes lead to a non-zero
neutrino magnetic moment 
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The magnetic moment could be much larger (BSM physics)
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Diagonal vs. transition magnetic moments

Diagonal: interaction with magnetic field between
equal mass states (neutrino m1 = m2) 

Transition: interaction only between different 
mass states (m1 ≠ m2)

Are neutrinos Dirac or Majorana fermions?

Dirac neutrinos can have both diagonal and transition moments.

Diagonal moments of Majorana neutrinos identically zero; 
only transition moments.

Propagation through cosmic and galactic magnetic fields cannot
change neutrino mass state.

Only Dirac neutrinos can have helicities changed by magnetic fields.



XENON1T low energy electron event excess

Possible explanations:
Large neutrino magnetic moment (3.2σ)
Solar axions (3.5σ)
Tritium (in Xe) beta decays

Beyond Standard Model physics??

magnetic
moment
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n
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Excess of low energy electron events
1-7 keV over expected background???
Aprile et al. PR D 102, 072004 (2020)



Excess now tracked to tritium contamination   
E. Aprile et al, PRL: 129, 161805 (2022) 

XENONnT = 6 tons of Xe

No indication of BSM neutrino magnetic moment



Neutrino’s spin precesses in B field, but momentum does not
(neutrinos are electrically neutral)

Define spin in rest frame of neutrino.  

Rest frame precession :
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Magnetic field lines in 
M51-Whirlpool Galaxy

Stratospheric Observatory
for Infrared Astronomy

SOFIA (on a 747) IR 
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For uniform galactic magnetic field: 2
v

mean crossing distance of the galaxy
Since galactic fields are uniform only over coherence length ,
spin direction undergoes a  in magrandom walk
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Neutrino spin rotation by galactic magnetic field
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Cosmic magnetic field rotation of neutrino spin

To within uncertainties in magnetic fields, coherence 
lengths, and neutrino masses, spin rotation in cosmic 
magnetic fields ~ galactic fields
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Spin rotation from gravitational vs. magnetic fields

Rotation in Milky Way
with magnetic moment 
~100 times smaller than 
current upper limit

Gravitational rotation
GB+JCP PRD

Rotation in Milky Way
with standard model
magnetic moment
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ITBD rate depends on the helicity of the relic neutrinos
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ITBD rate for Dirac neutrinos without helicity flip
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ITBD rate for Dirac neutrinos with helicity flip
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ITBD rate for Dirac neutrinos with partial helicity flip
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But not only have relic neutrinos never been 
observed, neither has the ITBD!

To detect the ITBD for the first time, one could use known sources 
of electron neutrinos

Peng and Baym, PRD  106, 063018 (2022)

3.0-MCi 51Cr at 50 cm

(double GALLEX)

Coloma et al. (Snowmass 2020)

51

51 51

Solar neutrinos and Cr source:
Cr V ee ν+→ + +



Conclusion

• Relic neutrino helicities could be modified by 
gravitational and magnetic fields 

• Detection rate of relic neutrinos via the ITBD reaction is 
sensitive to the Dirac/Majorana nature of neutrino, and to 
the masses of neutrinos

• For Dirac neutrino with normal hierarchy, the ITBD rate 
also depends on neutrino helicity, which is sensitive to 
neutrino magnetic moment

• Detection of relic neutrinos can reveal fundamental 
properties of neutrinos and the early Universe
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