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Entanglement is quantum world’s most prominent feature:

* It refers to the situation where a measurement on a subsystem will
improve our knowledge on the rest of the system.

* A guantum state of a system is entangled if it cannot be written as a
tensor-product state of its subsystems.

* Consider a bipartite system Ho = H; ® Ho , a state vector
1) € Hia is entangled if there is no [11) € Hi and |¢2) € Hs such

that

V) = |11) @ |12)



Einstein famously attacked “entanglement” as spooky action at a distance:
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Can Quantum-Mechanical Description of Physical Reality Be Considered Complete?

A. EinsTEIN, B. PopoLsky AND N. RosEN, Institute for Advanced Study, Princeton, New Jersey
(Received March 25, 1935)

RINSTRIN ATTACKS
QUANTUM THEORY

Scientist and Two Colleagues
Find It Is Not ‘Complete’
Even Though ‘Correct.’

SEE FULLER ONE POSSIBLE

A. Einstein B. Podolsky N. Rosen

Believe a Whole Description of
‘the Physical Reality’ Can Be
Provided Eventually.




[ll. Niklas EImehed © Nobel Prize lIl. Niklas EImehed © Nobel Prize Ill. Niklas EImehed © Nobel Prize

Outreach Outreach Outreach
Alain Aspect John F. Clauser Anton Zeilinger
Prize share: 1/3 Prize share: 1/3 Prize share: 1/3

The Nobel Prize in Physics 2022 was awarded
jointly to Alain Aspect, John F. Clauser and Anton
Zeilinger "for experiments with entangled photons,
establishing the violation of Bell inequalities and
pioneering quantum information science"



On the other hand, symmetry is among the most fundamental
principles in physics:

Powerful characterization of nature based on invariance under a
specified group of transformations.

Symmetries give rise to conserved quantities: energy, momentum,
angular momentum, etc.

Combining with quantum mechanics, there is a subtle realization of
symmetry — spontaneous symmetry breaking.

All known fundamental interactions are based on symmetry principles.




In modern perspectives,

* Gauge symmetry is not a real symmetry —it’s a reflection of the
redundancy in our description of nature.

A massless spin-1 particle has only two degrees of freedom, + and -

Helicities. However a Lorentz invariant description requires adding
two fictitious degrees of freedom by hand.

* Global symmetries are believed to be either completely broken or only
approximate.

Discrete symmetries like parity, time-reversal invariance are broken in

nature, while approximate symmetries are ubiquitous, for example
the isospin invariance.




But what is the origin of symmetry?

There are two historical perspectives:

Beauty In, Garbage Out —

As we explore higher and higher energy regimes, we discover
more and more symmetries. The symmetry is usually hidden
or broken in low energies.

Garbage In, Beauty Out —

At high energy level there is no symmetry. Rather symmetry
emerges only at large distances, in the infrared. These are
accidental symmetries.




But what is the origin of symmetry?

There are two historical perspectives:

Beauty In, Garbage Out —

As we explore higher and higher energy regimes, we discover
more and more symmetries. The symmetry is usually hidden
or broken in low energies.

Garbage In, Beauty Out —

At high energy level there is no symmetry. Rather symmetry
emerges only at large distances, in the infrared. These are
accidental symmetries.

But neither explain whether symmetry can be the natural
outgrowth of more fundamental principles.



On the other hand, John Wheeler coined another catchy phrase:

It from bit : “All things physical are information-theoretic in
origin”

INFORMATION, PHYSICS, QUANTUM: THE
SEARCH FOR LINKS

John Archibald Wheeler * 1

Abstract

This report reviews what quantum physics and information theory have to tell us
about the age-old question, How come existence? No escape is evident from four

winnowing: It from bit. Otherwise put, every it — every particle, every field of
force, even the spacetime continuum itself — derives its function, its meaning, its
very existence entirely — even if in some contexts indirectly — from the apparatus-
elicited answers to yes or no questions, binary choices [52], bits.




Indeed, remarkable connections between fundamental
physics and information science in the past decade.

It is natural to ask:

Can symmetry come from qubit?

Bit Qubit

| 1)

Q Q 7 ) = a0} + B]1)

0 |0)
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In this talk, we will use low-energy QCD as a playground to
study:

* Unexpected, emerging (approximate) global symmetries in
low-energy hadronic physics.

* Correlation between symmetry and entanglement
suppression in non-relativistic 2-to-2 scattering.

e Elucidate the connection from an information-theoretic
viewpoint.



Emergent symmetries in low-energy QCD:

* Schrodinger symmetry (non-relativistic conformal invariance)

* Spin-flavor symmetries




SU(2Ns) spin-flavor symmetries are symmetries of non-relativistic quark
model and date back to 1960s:

U A U R
U 1 B d AN
SU(4): 4 = PR SU(6): 6 = d |
d| st

Ample evidence for SU(4) and SU(6) in nature:

* Masses

* Magnetic moments and transitions
 Semilepton currents

* Meson-baryon and baryon-baryon couplings



SU(2Ns) spin-flavor symmetries are symmetries of non-relativistic quark
model and date back to 1960s:

U A U \
U 1 B d AN
SU(4): 4 = - su(e): 6 = d ]
dl st

Ample evidence for SU(4) and SU(6) in nature:

* Masses

* Magnetic moments and transitions

* Semilepton currents

* Meson-baryon and baryon-baryon couplings

They can be derived from QCD in the large N, limit!

Dashen, Monohar (1993); Dashen, Jenkins, Manohar (1994); Kaplan, Savage (1995)



In low-energy nuclear physics, there is a different SU(4) symmetry first
observed by Wigner:

JANUARY 15, 1937 PHYSICAL REVIEW VOLUME 51

On the Consequences of the Symmetry of the Nuclear Hamiltonian
on the Spectroscopy of Nuclei

E. WiGNER*
Princeton University, Princeton, New Jersey

(Received October 23, 1936)

The structure of the multiplets of nuclear terms is investigated, using as first approximation
a Hamiltonian which does not involve the ordinary spin and corresponds to equal forces
between all nuclear constituents, protons and neutrons. The multiplets turn out to have a

. p N
In this case the neutron and (p \
proton fill out a “supermultiplet”: N= 3

\n 1/
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In the EFT language, Wigner’s SU(4) is accidental in that,

after imposing the SU(4) quark spin-flavor symmetry, the
only remaining operator has this symmetry.



So far these spin-flavor symmetries can be argued from the large N. limit.

There are emergent symmetries beyond the large N.:

* Unnaturally large scattering lengths in low-energy NN scattering in the
s-wave, which include 1S, and 3S; channels.

The S-matrix for a single channel is

| Mp i1
— 225(29) — ) —— —
S=ce 1—|-227T.A, A M pootd —ip

It is long known that it’s p cot 6 which admits an expansion in 1/p, the

Effective Range Expansion (ERE):

1 1 1 1, \"
pcot5=—a+§r0p +...:_a-|-§A ZT"(F)

+

The scattering length



So far these spin-flavor symmetries can be argued from the large N. limit.

There are emergent symmetries beyond the large N.:

* Unnaturally large scattering lengths in low-energy NN scattering in the
s-wave, which include 15, and 35, channels.

The S-matrix for a single channel is

| Mp i1
S=e b A= Mpoots—ip

It is long known that it’s p cot 6 which admits an expansion in 1/p, the

Effective Range Expansion (ERE):

1 1 1 1 - »?\"
td = —— 4+ = 24 .= 2 1 ZA2 =
pco ~+ 5P+ —+ nzzor (A2)
t 150 . ao = '237 fm
3S,:a;=5.4 fm - Deuteron!

The scattering length 1/m, = 1.4 fm



In the limit the scattering length a diverges, the system has no scale and
there’s the non-relativistic conformal invariance. Mehen, Stewart, Wise (1999)

At the infinitesimal level,

boosts: ' =r+0vt, t'=t,
scale: ' =r+sx , t'=t+2st ,
conformal: ' =F—ctd , t' =t—ct?

So NN scattering has approximate Schrodinger symmetry.

WHO ORDERED THAT??!



* Nucleons are part of spin-1/2 octet baryons:

Y

n(ddu) p(uud)

FATANE B P Y |
B= 5= ~¥0/\2+A/V6  m _ s
= - - \ﬁ A % “(dds) ®s%uds) /X*(uus)

3
= (ssd) = %(ssu)
nr=3 C1
L% = — F(B;’ B;B!B;) — 7 “(B!B, BIB;) — 7 (B*BTB B;) — 7 (BTBTB B;)
— S(BIB.)(B!B;) — =(B!B;)(BIB)),  i.j=1!

f

Savage, Wise (1995)



Lattice QCD could compute the six Wilson coefficients under some special
circumstances:

: ErL‘ ’ ﬁ £ INT-PUB-17-017, MIT-CTP-4912, NSF-ITP-17-076
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Baryon-Baryon Interactions and Spin-Flavor Symmetry

from Lattice Quantum Chromodynamics

Michael L. Wagman,"? Frank Winter,> Emmanuel Chang, Zohreh Davoudi,*
William Detmold,* Kostas Orginos,®*® Martin J. Savage,"? and Phiala E. Shanahan?
(NPLQCD Collaboration)
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Lattice QCD could compute the six Wilson coefficients under some special
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Low-energy Scattering and Effective Interactions of Two Baryons at
my ~ 450 MeV from Lattice Quantum Chromodynamics

Marc Illa,! Silas R. Beane,2 Emmanuel Chang, Zohreh Davoudi,®*
William Detmold,® David J. Murphy,® Kostas Orginos,®7 Assumpta Parrefio,!
Martin J. Savage,® Phiala E. Shanahan,® Michael L. Wagman,® and Frank Winter”
(NPLQCD Collaboration)
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In the limit where all coefficients but c; are vanishing:

The remaining operator can be re-written,

B = (nT7n¢7pT7p¢7“') ) L= —Cs (BTB)z

which is invariant under an SU(16) spin-flavor symmetry
B—-UB, UlU=1

There is no large N. explanation!



In 2018 a paper from Seattle made a fascinating observation regarding
emergent symmetries and entanglement suppression in low-energy QCD:

PHYSICAL REVIEW LETTERS 122, 102001 (2019)

Entanglement Suppression and Emergent Symmetries of Strong Interactions

Silas R. Beane,1 David B. Kaplan,2 Natalie cho,l’2 and Martin J. Savage2
'Department of Physics, University of Washington, Seattle, Washington 98195-1560, USA
*Institute for Nuclear Theory, University of Washington, Seattle, Washington 98195-1550, USA

® (Received 20 December 2018; published 14 March 2019)

Entanglement suppression in the strong-interaction § matrix is shown to be correlated with
approximate spin-flavor symmetries that are observed in low-energy baryon interactions, the Wigner
SU(4) symmetry for two flavors and an SU(16) symmetry for three flavors. We conjecture that

This raises the intriguing possibility of understanding symmetry from
guantum entanglement!



To discuss entanglement suppression, we need to quantify the amount
of entanglement = Entanglement Measure!

Many possibilities for Entanglement Measure. For bipartite systems:

von Neumann entropy: FE(p) = —Tr(p;1np;) = —Tr(py In ps)

Linear entropy: E(p) = —Tr(pi(p1 — 1)) = 1 — Trp?

p = Y)Y p1/2 = Tra/1(p)

The common property is that the entanglement measure vanishes for a
product state |¢¥) = |¢1) ® |¢2), but attains the maximum for maximally
entangled states.



For a system with two spin-1/2 particles, let’s define the “computational

basis:”
{0, 1) 1), O

Then for a general normalized state,

) =a[tt) + BN + NN+, o +BP+ W+ =1,

The reduced density matrix and linear entropy are

] + |8]* ay* + B6*
oy + B Y2 +1612)

p1 = Tra [¢h) (Y] = (

Fasy to check that E(|¢)) = 1 — Trip; = 2|ad — By
1. It vanishes for a product state.
2. Maximal entanglement is 1/2, which is the case for the Bell states:

(1) £ 1)/ V2 (It £ 1)/ v2



Entanglement is a property of the quantum state.

But we are more interested in the ability of a quantum-mechanical
operator (i.e. the S-matrix) to entangle = the Entanglement Power

The entanglement power measures the ability of an operator U to
generate entanglement by averaging over all product states:

E(U) = E(U |¢1) ® [¢2)),



Entanglement is a property of the quantum state.

But we are more interested in the ability of a quantum-mechanical
operator (i.e. the S-matrix) to entangle = the Entanglement Power

The entanglement power measures the ability of an operator U to
generate entanglement by averaging over all product states:

EU) = E(U [¢1) @ [¢2)),

There is, however, a notion of equivalent class:

U~U it U= UU)UVi® V)

\ 7

Operators local in product space



Modulo the equivalent class, there are two and only two minimally
entangling operators, which in the computational basis,

(10 0 0) (10 0 0)

0100 0010
1= , SWAP =
0 010 0100

\0 0 0 1) \0 00 1)

|Identity gate: do nothing.
SWAP gate: interchange the qubits.

In terms of Pauli matrices,

SWAP =(1+0-0)/2, U-UEZU“@)U“.

Low, Mehen: 2104.10835



In this notation, the S-matrix for low-energy neutron-proton scattering in
the s-wave can be written as

S = = (€% 4+ ¢¥%) 14 = (%% — ) SWAP,

2

DN | —

d,and &, are the scattering phases in the 1S, and 3S; channels.

Low, Mehen: 2104.10835



This is precisely the observation of the Seattle group:

Le=—1Cs(N'N)? — 1Cp(NT3N)?

1S() . é() = (CS - 3CT)
351 . C_'l = (CS + CT)

£(8) = 5 sin’ (2061~ &)

Conformal fixed points
(zero or infinite scattering

1o lengths, 8i = o, 1/2)

SU(4)wigner symmetry line
(60 = 61)

0.0 0.2 0.4 0.6

Co/C.

e DB Kaplan ACP: “ln Pursuit of New...Paradigms” 3/30/19

&

Slide by D.B. Kaplan







We will focus on the spin-1/2 octet baryons:

2-to-2 scattering contains 64 channels, but group theory says:

8R8=27T08sP1P10D 103D 84
\ ' ] |\ ' J

Anti-Symmetric
in flavors in flavors




We will focus on the spin-1/2 octet baryons:

2-to-2 scattering contains 64 channels, but group theory says:

8R8=27T08sP1P10D 103D 84
\ ' ] | ' ]

Anti-Symmetric
Pauli Exclusion in flavors in flavors
Principle!

¥ ¥

Anti-Symmetric

Symmetric in
spins (35,)!

in spins (1S,)!



Recall strong interaction preserves charge (Q) and strangeness (S)

— Classify the scattering channel into sectors with definitive (Q, S).

Q S Q S Q S
nn 0 0 XX | =2 | =2 ) —2 -3
np 1 0 YA »-=0
pp 2 0 %0 | -1 | =2 =30 | -1 | -3
ny- -1 -1 n=" = A
nA YT =Xt
n30 0 ~1 »0370 =0A 0 -3
o AX0 =00
pA AA 0 | —2 =%t 1 | =3
pX° 1 | -1 n=° EE | -2 | —4
nyt pE~ ==Y -1 —4
Pt 2 | -1 SFA =0=0 | 0 | —4
»+30 1 —2
pZE’
Yyt 2 —2

The S-matrix is block-diagonal among different (Q,S) sectors.

Liu, Low, Mehen: 2210.12085



To warm up, let’s consider consider the 1-dimensional sectors with non-
identical baryons:

Baryon pairs symmetric flavor irrep | anti-symmetric flavor irrep
np, X2, ¥+=0 27 10
ny,pxt, 2 =Y 27 10

Using the n-p scattering to set the stage:

Spin projector Spin projector Pg: the projector into
into 1S, channel into 3S; channel the SU(3) R-irrep.

In the flavor eigenbasis {|pn), |np>}

(2w

o

(4 k)



Recall SWAP = (140 -0)/2 and

l—0c: 0o 1 34+0- -0 1
— —(1 — SWAP = —(1 4+ SWAP

Moreover,

1
Poy = %(1 +SWAP) . Pgg = (1~ SWAP)

1 :
where SWAP = G O) interchanges the two incoming flavor states.

In the end,

_1-SWAP 1+SWAP ,;, 1+SWAP 1-SWAP ,;

o 2 < 2 2 < 2

SWAP = SWAP operator in the spin space
SWAP = SWAP operator in the flavor space




210
b =05 =0 :  §==—- (1&1—SWAP @ SWAP)

621'5

do7 =d05E 5 =0 : §=-— (SWAP®1—1® SWAP)

-
2

At first sight these two S-matrices don’t appear to be minimally
entangling....



210
dr =05 =0 S="—(1&1-SWAP®SWAP)

621’5

by =0t 5 =06 : §=—— (SWAP®1— 1®SWAP)

At first sight these two S-matrices don’t appear to be minimally
entangling....

But there is an interesting interplay due to Fermi-Dirac statistics:

SWAP ® SWAP |Ny,s1; Ny, s9) = |Na, 95 N1, 81) = —| N1, 815 Na, S2)
m) SWAPQSWAP=-1®1

1 X SWAP |N1,81; NQ, 82> = —SWAP X 1 |N1,81; N2,82>



210
2

219

dor=05=0: S=-— (191 -SWAP®SWAP)|=¢€ 1®1

€

527=5E:|:g=5 . S:

(SWAP®1-1® SWAP1 — ¢% SWAP ® 1

At first sight these two S-matrices don’t appear to be minimally
entangling....

But there is an interesting interplay due to Fermi-Dirac statistics:

SWAP ® SWAP |N1731;N2782> = |N2,82;N1781> = —|N1731;N2,32>
m) SWAPQSWAP=-1®1

1 X SWAP |N1,81; NQ, 82> = —SWAP X 1 |N1,81; N2,82>

In the end we do get minimally entangling S-matrices, as expected!



The analysis extends to other more complicated (Q,S) sectors and we are
able to obtain conditions on the scattering phases under which the 2-to-2
scattering in each (Q, S) sector is minimally entangled:

(Q,S) sectors

Minimal Entanglement Conditions

np
YTET
»+E?

(527 = (5ﬁ or 527 = (Sm + %

ny~
pXT

—=—=0

07 =019 Or 097 =010% 5

(pA, pX°, nXt)
(nA, nX°, p¥X)
(A, %0, nE-)
(54, B0, p=)
(X-20,5-50, =-50)
(E-x+,Z0A, Z050)

Og7 = 0gs =010+ 5 =01gt 5 =08, £ 3
or
097 = 08y = 010 = 015 = Jg,

(¥, 250, AXO, - p, =%n, AA)

or 52725&9:51:510:‘:%:

027 = 085 = 01 = 010 = 015 = s,
ot T=0g, T

TABLE III. Conditions in each flavor sector for the S-matrix to be minimally entangling. An
Identity gate is achieved when all the phases are equal, while a SWAP gate is when the phases

differ by 7 /2.

Liu, Low, Mehen: 2210.12085



To investigate what emerging symmetries appear, it’s most convenient to
use the EFT Lagrangian, where the symmetry is manifest:

Ly = f2 °L(B!B; B!B;) - f2
’r TR

These Wilson coefficients can be projected into SU(3)-symmetric Wilson
coefficients:

<EBEB) (FEBB) (EFBB)

f2
S (B!B,)(B!B),

72

_ _ Cor=c1—cy+c5—cs
Relation between scattering phase

and Wilson coefficient: Cg. = —gcl + 202 — §03 + §c4 + 5 — cg
S 3 3 6 6
1 1 8 8
4 Cr=—-za+ 50— 3+ ca+c5—cs
pCO’C(Sz':—(N-l—MC) 3 3 3 3
‘ Cm=c1+Cz+C5+C(5,
For natural scattering Cio=—¢1 —ca+ 5+ ¢
length, set u = 0. 3 3
: CgA=§c3+§c4—|—c5+c6~.

Wagman et. al.: 1706.06550



From these relations it is straightforward to obtain conditions for
entanglement suppressions on the Wilson coefficients:

Flavor subspaces

Minimal Entanglement Conditions

np
$-=- + g =+ 2T
= Cy = —Cg or C1 Cy — M , Co Ceg = M
y+=0
nx—

21 2T
p2+ C1 = Cg or _62+C5——M—u7 Cl—CGZiM—u
=20

A, pXl n¥t
(pA, p
(nA, nX°, pX7) , ,
(Z_A, Z_EO, TL.:._) Cl1 = —C9 = —§C3 = 564 = Cp
(LTA, 230, p=0) or
1 1 2 2
(E_EO,E_ZO,E_EO) Cl = —Cy = —§C3 = §C4 = —Cp5 — M—Z =cgt M—Z

(E-T+,E0A, =050)

(T8, 2050, AX0, = p, =0n, AA)

TABLE IV. Minimal entanglement conditions on Wilson coefficients in each flavor subspace.

cp=cCc=c3=cs=c=0 or
Cq =62203=C4=0,C5= —27T/M,Ll,,66=
+27/Mu

Liu, Low, Mehen: 2210.12085



A summary table on the emerging symmetries:

Flavor Subspace

Symmetry of Lagrangian

np

YTET SU(6) spin-flavor symmetry

y+=0 or conformal symmetry in 27 and 10 irrep channels
ny-

pXTt conjugate of SU(6) spin-flavor symmetry

—=—=0
e

or conformal symmetry in 27 and 10 irrep channels

(pA, pX°, nXT)
(nA, nX°, p¥~)
(2-A, %0, nE")
(ZFA, +E0, p=9)
(220, =-x0, =-x9)
(E-+,Z0A, 20%9)

SO(8) flavor symmetry -
or conformal symmetry in 27, 85, 8 4, 10 and 10
irrep channels

(ZT=-, 2050, AX0, = p, =0, AA)

SU(16) symmetry
or SU(8) and conformal symmetry

TABLE V. Symmetries predicted by entanglement minimization in each flavor sector.




These Wilson coefficients can be simulated using lattice QCD:

Natural case (u = 0) Unnatural case (. = m.)

100 —— 1 30p _
50 F 1 | ] ]
5 | oof : -.
§ of f } 1 l NN
. E iml {I @EE-E 10_@*”]' /I)im! QE -
& —50F 1 ;|; ? ] [ ]
:6 - }
—100 | or ]
—150 I I 1 1 I 1 ] ~10 L I I 1 1 ] 1
c(27) C(SS) c(l) C(E) c(lo) c(SA) C(27) C(SS) c(l) C(I_O) 0(10) c(SA)
40 | T 1 1
L 10 f { .
20 C | L l
T ; ] ; 15t i
r 0 - l } - L
&2 L [ L
S [ ] [
= * FlL
s 20T 1 o } { ; ]
ol ; ] * f ]
—5r ]
—60 [

C1 C2 C3 Cq Cs Ce C1 C2 C3 C4 Cs Ce

NPLQCD: 2009.12357



These Wilson coefficients can be simulated using lattice QCD:

100 —— 1 30p .
502— — 20:_ ] ;I;
0;— E @}E_? [ o 8 e
soi%p' BRA | ope N
—100: of I
O ~10! JRCL B C TS R Y 0 10 Ga)
1 Lk Surs 2 o ]
| 20(8)>;
ool o
N fr {3 _
Xl ol

Natural case (u = 0)

Unnatural case (1 = my)

C1

C2

C3 Cq

Cs

C1

C2 C3 C4 Cs

NPLQCD: 2009.12357



Outlook

In pursuit of a new paradigm:

Can symmetry be the outgrowth of more

fundamental principles?

The answer appears to be a tantalizing YES!

Less entanglement “ More symmetry

 What about spontaneously broken symmetries? And gauge symmetry?

* We often invoke symmetry to explain naturalness. Can we understand
(un)naturalness through quantum information?



