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• Hidden sectors are motivated by many physics 
questions:

- Solutions to the hierarchy problem, e.g., neutral 
naturalness, cosmological relaxation, …

- Dark matter

- Baryon asymmetry

- Other theoretical puzzles and experimental 
anomalies.

• Hidden sector physics also provides new signatures, new 
targets and challenges for experimental searches.
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• Confining non-abelian gauge groups (dark QCDs) are 
common in hidden sectors. If there are light fermions 
(dark quarks) charged under the dark QCD, the lightest 
dark hadrons are expected to be pseudo scalars (dark 
pions).

• The properties of dark pions largely determine the 
phenomenology of the dark sector. 

- If they are stable, they could be part of the dark 
matter (e.g. SIMP)

- If they are unstable and decay back to SM through 
some portals, we need to know their lifetimes and 
decay products.
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• Some common portals:

- Dark photon kinetically mixed with photon: Only 
transverse mode mixing while dark pions need to 
decay through the longitudinal mode.

- Higgs boson: Only CP even states may decay through 
Higgs if no CP violation. Decay lengths are long for 
dark pions lighter than ~3 GeV.

- New heavy states connecting the dark quarks and SM: 
Constrained by experimental searches (typically  
TeV). The production is suppressed and decay lengths 
of dark pions are also typically very long compared to 
collider scale.

≳
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• Z-portal provides an interesting scenario which is less 
studied.

- Z decays can be the dominant production mechanism 
for hidden sector states at colliders.

- Dark pions can decay through the longitudinal mode 
of the Z boson back to SM.
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• Light dark quarks should be neutral under SM. How do 
they couple to Z?

1. Light dark quarks mix with heavy SM EW doublet 
fermions. (HC, L. Li, E. Salvioni, C.B. Verhaaren, 1906.02198, HC, L. Li, 
E. Salvioni, 2110.10691)

2. Light dark quark are charged under a dark U(1) 
which mix with Z after EW breaking.
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Dark  MixingZ′ − Zare described by (we use Dµ = @µ + igAµ as sign convention)

L = LSM + LZ0 + Lmix, (2.1)
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where B̂µ⌫ , Ŵ 3
µ⌫ , Ẑ

0
µ⌫ are the field strengths of the U(1)Y , third component of SU(2)W ,

and U(1)0 respectively; fL(R)i are left (right) handed SM fermions and YL(R)i, T
3
Li

are their

charges under U(1)Y and T3L of SU(2)W ; ĉW , ŝW are cosine and sine of the Weinberg

angle in the absence of the dark sector and Ẑµ = ĉW Ŵ
3
µ � ŝW B̂µ, Âµ = ŝW Ŵ

3
µ + ĉW B̂µ

are Z and photon fields without mixing with the dark gauge boson;  L(R)i are the dark

fermions, with xL(R)i being their dark U(1)0 charges. The kinetic mixing between U(1)Y
and U(1)0 is parametrized as sin� for later convenience (the absolute value of this coe�cient

must be smaller than 1, to ensure positivity of the kinetic energy). The mass mixing �M̂2

comes from the VEV of the second Higgs doublet charged under U(1)0. The notation and

formalism are mostly followed from Ref. [8]. The mass eigenstates of the neutral gauge
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Âµ

Ẑµ
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where Aµ, Z1µ correspond to the physical photon and the observed Z boson, and Z2µ is

the dark Z
0 mass eigenstate, with the mixing matrix given by
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 :  SM fermions,    : dark fermions,    : dark U(1) chargef ψ x

 :  kinetic mixing sin χ

 :  mass mixing, can arise from a second Higgs doublet   
which carries the dark U(1) charge
δM̂2
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ĉW
Y

i

RB̂µ

◆
fRi

�
, (2.2)

LZ0 = �1

4
Ẑ
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Ŵ

3
µ⌫Ŵ
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ĉW
Y

i

RB̂µ

◆
fRi

�
, (2.2)

LZ0 = �1

4
Ẑ

0
µ⌫Ẑ
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µ + ĉW B̂µ

are Z and photon fields without mixing with the dark gauge boson;  L(R)i are the dark

fermions, with xL(R)i being their dark U(1)0 charges. The kinetic mixing between U(1)Y
and U(1)0 is parametrized as sin� for later convenience (the absolute value of this coe�cient

must be smaller than 1, to ensure positivity of the kinetic energy). The mass mixing �M̂2

comes from the VEV of the second Higgs doublet charged under U(1)0. The notation and

formalism are mostly followed from Ref. [8]. The mass eigenstates of the neutral gauge

bosons are obtained by first performing a field redefinition to remove the kinetic mixing,
 
B̂µ

Ẑ
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0 sin ⇠

cos�
cos ⇠
cos�

1

CA ,

L
�1 =

0

B@
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ZẐµẐ
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Ẑ

0
µ⌫B̂

µ⌫ + �M̂
2
ẐµẐ
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3
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Ẑ
0
µ

!
=

 
1 � tan�

0 1/ cos�

! 
Bµ

Z
0
µ

!
, (2.5)

then a rotation between (Ẑµ, Z
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• Neutral gauge boson eigenstates

Remove kinetic mixing:

Rotation to remove mass mixing:

(Following Babu, Kolda, 
March-Russell, hep-ph/
9710441)



Dark Z′ 

• The constraints on such a dark  from direct searches 
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8ŝ2
W
ĉ
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The electroweak oblique parameters S, T , U [11, 12] can be extracted by comparing to the

e↵ective Lagrangian,
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These should be viewed as three equations defining S, T, U . We obtain (c2W ⌘ c
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W ⇠

2
.

The parts colored in teal should su�ce for the level of accuracy we are aiming at. They

have also been cross-checked with the results of Ref. [13].

For MZ2 � MZ1 , Z2 can be integrated out to obtain an e↵ective Lagrangian at the
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and v ' 246 GeV, the coe�cients of OWW = JaµJ
µ
a + . . . and OBB = JY µJ

µ

Y
+ . . . can be

extracted from the pieces of Eq. (2.13) that are proportional to M
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Note that for � = 0 we obtain Y/W = t
2
W
, where tW ⌘ sW /cW .
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Z1 = Z, Z2 = Z′ 
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EW constraints on Dark Z′ 

(Different from Babu, Kolda, 
March-Russell, hep-ph/9710441)

3 Electroweak Constraints

Mixing with the dark Z
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where t
L,R

3i
is the 3rd component of weak isospin of the left-(right-)handed component of fermion i.

For example, a heavy degenerate ordinary or mirror family would contribute 2/3fi to S. In models
with warped extra dimensions [350], sizeable corrections to the S parameter are generated through
mixing between the SM gauge bosons and their Kaluza-Klein (KK) excitations, and one finds
S ¥ 30 v

2
M

≠2
KK

[351], where MKK is the mass scale of the KK gauge bosons. Large positive values
of S can also be generated in models with dynamical electroweak symmetry breaking, where the
Higgs boson is composite. In simple composite Higgs models, the dominant contribution stems
from heavy spin-1 resonances of the strong dynamics leading to S ¥ 4fiv

2(M≠2
V

+ M
≠2
A

), where
MV,A are the masses of the lightest vector and axial-vector resonances, respectively [352].

Negative values of S are possible, for example, in composite Higgs models [353], or from loops
involving scalars or Majorana particles [354–356]. The simplest origin of S < 0 would probably
be an additional heavy Z

Õ boson [335]. Supersymmetric extensions of the SM [357, 358] generally
give very small e�ects. For more details and references, see Refs. [359–368] and the Sections on
“Supersymmetry” in this Review. Most simple types of new physics yield U = 0, although there
are counter-examples, such as the e�ects of anomalous triple gauge vertices [348].

The SM expressions for observables are replaced by,

M
2
Z = M

2
Z0

1 ≠ ‚–(MZ)T
1 ≠ GF M

2
Z0S/2

Ô
2fi

, (10.82a)

M
2
W = M

2
W 0

1
1 ≠ GF M

2
W 0(S + U)/2

Ô
2fi

, (10.82b)

where MZ0 and MW 0 are the SM expressions (as functions of mt and MH) in the MS scheme.
Furthermore,

≈Z = M
3
Z

—Z

1 ≠ ‚–(MZ)T , (10.83a)

≈W = M
3
W —W , (10.83b)

Ai = Ai0
1 ≠ ‚–(MZ)T , (10.83c)

where —Z,W are the SM expressions for the reduced widths ≈Z0/M
3
Z0 and ≈W 0/M

3
W 0, MZ and MW

are the physical masses, and Ai (Ai0) is a neutral-current amplitude (in the SM).
The data allows for a simultaneous determination of MH and mt (from the hadron colliders),

S (from MZ), T (mainly from ≈Z), U (from MW ), ‚s 2
Z

= 0.23112 ± 0.00013 (from the Z pole
asymmetries), and –s(MZ) = 0.1189 ± 0.0018 (from R¸, ‡had, and ·· ), giving,

S = ≠0.02 ± 0.10 , (10.84a)
T = 0.03 ± 0.12 , (10.84b)
U = 0.01 ± 0.11 , (10.84c)

with little correlation among the SM parameters, where the uncertainties are from unknown higher
orders in the SM predictions and the inputs. The parameters in Eq. (10.84), which by definition
are due to new physics only, are in excellent agreement with the SM values of zero. Fixing U = 0,
which is motivated by the fact that U is suppressed by an additional factor M

2
new/M

2
Z

compared
to S and T [369], greatly improves the precision on S and particularly T ,

S = ≠0.01 ± 0.07 , (10.85a)
T = 0.04 ± 0.06 . (10.85b)

11th August, 2022

PDG global fit:

puts constraints on  plane.ξ − tan χ

For , sin χ = 0 |ξ | ≲ 0.02
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EW constraints on Dark Z′ 

• If the dark  is lighter than , it can give enhanced 
contribution to low-energy non- -pole observables. 
The strongest constraint comes from atomic parity 
violation (APV).

• Low-energy EFT after integrating out :

Z′ Z
Z

Z, Z′ 

Leff = −
4GF

2
ρ*(0)[jμ

3 − s2
*(0)Jμ

Q]
2

+ ϵ(Jμ
Q)2

ρ*(0) = ρ*(M2
Z) +

M2
Z1

M2
Z2

[ξ2 − 2sWξ tan χ + s2
W tan2 χ]

s2
*(0) = s2

*(M2
Z) +

M2
Z1

M2
Z2

[−sWc2
Wξ tan χ + s2

Wc2
W tan2 χ]

11



Atomic Parity Violation

14 10. Electroweak Model and Constraints on New Physics

Figure 10.2: Scale dependence of the weak mixing angle defined in the MS scheme [39,83] (for the
scale dependence in a mass-dependent renormalization scheme, see Ref. [82]). The minimum of the
curve corresponds to µ = MW , below which we switch to an e�ective theory with the W

± bosons
integrated out, and where the —-function for ‚s 2(µ) changes sign. At MW and each fermion mass
there are also discontinuities arising from scheme dependent matching terms, which are necessary to
ensure that the various e�ective field theories within a given loop order describe the same physics.
However, in the MS scheme these are very small numerically and barely visible in the figure provided
one decouples quarks at µ = ‚mq( ‚mq). The width of the curve exceeds the theory uncertainty from
strong interaction e�ects which at low energies is at the level of ±2 ◊ 10≠5 [39]. The Tevatron and
LHC measurements are strongly dominated by invariant masses of the final-state di-lepton pair of
O(MZ) and can thus be considered as additional Z pole data points. For clarity we displayed the
Tevatron and LHC points horizontally to the left and right, respectively.

in the nuclear weak charges QW (Z, N), where Z and N are the numbers of protons and neutrons
in the nucleus. In terms of the nucleon vector couplings,

g
ep

AV
© 2g

eu

AV + g
ed

AV ¥ ≠
1
2 + 2‚s 2

0 , (10.33a)

g
en

AV © g
eu

AV + 2g
ed

AV ¥ +1
2 , (10.33b)

one has,

QW (Z, N) © ≠2 [Z(g ep

AV
+ 0.00005) + N(g en

AV + 0.00006)]
3

1 ≠
–

2fi

4
, (10.34)

where the numerically small adjustments are discussed in Ref. [13] and include the result of the
“Z-box correction from Ref. [176].

E.g., QW (133
78Cs) is extracted by measuring experimentally the ratio of the parity violating

amplitude, EPNC, to the Stark vector transition polarizability, —, and by calculating theoretically

11th August, 2022

For 133
78Cs, Z = 55, N = 78,

ΔQW

QW
≃ Δρ* + 2.9Δs2 .

QW = − 72.82 ± 0.26exp ± 0.33th

SM prediction: −73.23 ± 0.01

For  sin χ = 0, ξ = 0.02, MZ2
≳ 20 GeV

(  can be lighter for smaller .)MZ2
ξ
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Dark Pion Decays
• Dark pions decay through interaction between dark 

current and SM current. Only the axial part contributes.

The interactions of the neutral gauge boson eigenstates with SM and dark fermions are

�
⇣
êJ
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µ

Z
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D
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ĝDJ
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CA , (2.9)

where ĝZ = ê

ŝW ĉW
and

J
µ

EM =
X

i

f̄i�
µ
Qifi, (2.10)

Ĵ
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Z
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X

i
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µ(T 3

Li � ŝ
2
WQi)PL(R)fi, (2.11)

J
µ

D
=

X

i

 i�
µ
xL(R)iPL(R) i. (2.12)

At energies much below the masses of Z1 and Z2, one can integrate out Z1 and Z2 to obtain

an e↵ective Lagrangian of current-current interactions,
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2.2 Models with dark fermions mixing with heavy doublets

If in addition to the light dark fermions  i, there are N heavy electroweak doublet fermions

Qi = (Qu Qd)Ti with hypercharge 1/2, transforming in the same way under the dark QCD

as the light dark fermions. One can write down Yukawa couplings between them with the

SM Higgs doublet, as well as their intrinsic Dirac masses,

�LUV = QLY  RH +QR
eY  LH +QLMQR +  L! R + h.c. , (2.14)

where Y , eY , M , and ! are N ⇥ N matrices in flavor space. The mass matrices M

and ! can be diagonalized with real and positive diagonal elements by separate unitary

transformations on the QL,R and  L,R fields, respectively, so they can be taken as this form

without loss of generality. The masses M of the heavy fermions need to be above ⇠ 1 TeV.

This setup arises naturally in the triple top model [9] and the cosmological relaxation

model [10] for solving the naturalness problem of the electroweak scale.

Below the scale M we can integrate out the heavy Q fields. At the tree level we obtain

an e↵ective Lagrangian,
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 RY

†M�2Y
h
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µ
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DµH

i
 R + h.c.

+
1

2
 L

eY †M�2 eY
h
|H|2i /D + i�

µ
H

†
DµH

i
 L + h.c. (2.15)

�  L! R +  L
eY †M�1Y  R|H|2 + h.c. ,

up to dimension 6. The first terms in square brackets in the first two lines of Eq. (2.15) give

small corrections to the dark fermion kinetic terms after inserting the Higgs VEV, which
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4 E↵ective theory for dark hadrons

Assuming that there are N light flavors of dark quarks transforming as the fundamental

representations of the dark QCD, their masses can take a general form of an N⇥N matrix.

Even if they carry di↵erent charges under a dark U(1), the masses between dark quarks

with di↵erent U(1) charges may be induced by coupling to the dark Higgs VEV that breaks

the dark U(1). The mass eigenstates  0
L,R

= ( 0
1L,R, 

0
2L,R, · · · )T are obtained by unitary

rotations  L,R = UL,R 
0
L,R

, and the diagonal mass matrix is

m 0 = U
†
L
m UR . (4.1)

The dark pions are made of dark quarks. For the minimal case of N = 2, the dark

pions correspond to

⇡̂a ⇠ i( 
0
L�a 

0
R �  

0
R�a 

0
L) =  

0
i�a�5 

0
, (4.2)

where �a are the usual Pauli matrices. As discussed in Ref. [7], the ⇡̂2 has J
PC = 0��

whereas ⇡̂1,3 have 0�+. If there are CP -violating phases, the CP -odd and CP -even scalars

will mix. The dark pions are created by the axial vector currents.

h0|jµ5a(0)|⇡̂b(p)i = � i�abf⇡̂ p
µ
, (4.3)

with normalization of the decay constant f⇡̂ corresponding to f⇡ ⇡ 93 MeV in the SM, and

j
µ

5q = j
µ

Rq
� j

µ

Lq
, j

µ

L,R q
=  

0
L,R�

µ
�q

2
 
0
L,R . (4.4)

The e↵ective interactions of the dark pions with SM fermions can be obtained by matching

to the current-current interactions between the SM and the dark sector derived in Sec. 2.

In the following we work out the cases of the dark Z
0 model and the heavy fermion model.

(Discussion of vector mesons? –HC)

4.1 Dark Z
0
model

The dark U(1) current is

J
µ

D
=  �

µ
XLPL +  �

µ
XRPR , (4.5)

where

XL =

0

B@
x1L 0 · · ·
0 x2L
...

. . .
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0 x2R
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. . .
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CA , (4.6)

are dark U(1) charge matrices. Expressed in terms of mass eigenstates, it becomes

J
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=  0�µU †
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0 +  0�µU †
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XRURPR 
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DA
, (4.7)
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where

X
0
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1
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0
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†
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XRUR. (4.8)

Taking the vector-like limit, XL = XR, and m
ij

 
6= 0 if  iL and  jR have the same U(1)D

charge. In this case, the mixing matrix m 0 and X
0
L,R

are all diagonal, and all dark pions

are stable. On the other hand, if the U(1)D breaking e↵ect also contribute to the m , the

flavor symmetry is broken in general, and X
0
L,R

are no longer diagonal in general.

At low energies, the interactions of dark hadrons with SM particles come from the

dark current ⇥ SM current term in Eq. (2.13):

�
 
(eJµ

EML12 + ĝZ Ĵ
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The interactions of the dark pions with SM particles can be obtained from Eq. (4.9):
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Because ⇡̂’s only decay through axial vector currents, Jµ

EM does not contribute, and only

the axial part of the Z current contributes,
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The e↵ective Lagrangian for the dark pion decay is then
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ĝZ ĝD
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The e↵ective decay constant f (b)
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Plugging in the expression for L22, L32, L23, L33 and using the relations between mass

eigenvalues and the mixings to simplify the result, one can find
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where �a are the usual Pauli matrices. As discussed in Ref. [7], the ⇡̂2 has J
PC = 0��

whereas ⇡̂1,3 have 0�+. If there are CP -violating phases, the CP -odd and CP -even scalars

will mix. The dark pions are created by the axial vector currents.

h0|jµ5a(0)|⇡̂b(p)i = � i�abf⇡̂ p
µ
, (4.3)

with normalization of the decay constant f⇡̂ corresponding to f⇡ ⇡ 93 MeV in the SM, and

j
µ

5q = j
µ

Rq
� j

µ

Lq
, j

µ

L,R q
=  

0
L,R�

µ
�q

2
 
0
L,R . (4.4)

The e↵ective interactions of the dark pions with SM fermions can be obtained by matching

to the current-current interactions between the SM and the dark sector derived in Sec. 2.

In the following we work out the cases of the dark Z
0 model and the heavy fermion model.

(Discussion of vector mesons? –HC)

4.1 Dark Z
0
model

The dark U(1) current is

J
µ

D
=  �

µ
XLPL +  �

µ
XRPR , (4.5)

where

XL =

0

B@
x1L 0 · · ·
0 x2L
...

. . .

1

CA , XR =

0

B@
x1R 0 · · ·
0 x2R
...

. . .

1

CA , (4.6)

are dark U(1) charge matrices. Expressed in terms of mass eigenstates, it becomes

J
µ

D
=  0�µU †

L
XLULPL 

0 +  0�µU †
R
XRURPR 

0

=  0�µX 0
LPL 

0 +  0�µX 0
RPR 

0

=  0�µ
1

2
(X 0

R +X
0
L) 

0 +  0�µ�5
1

2
(X 0

R �X
0
L) 

0

=  0�µX 0
V  

0 +  0�µ�5X
0
A 

0

= J
µ

DV
+ J

µ

DA
, (4.7)

– 8 –

Dark U(1) charge matrix in mass 
eigenstate basis 
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Dark Pion Decays

where

X
0
V =

1

2
(X 0

R +X
0
L), X

0
A =

1

2
(X 0

R �X
0
L), X

0
L = U

†
L
XLUL, X

0
R = U

†
R
XRUR. (4.8)

Taking the vector-like limit, XL = XR, and m
ij

 
6= 0 if  iL and  jR have the same U(1)D

charge. In this case, the mixing matrix m 0 and X
0
L,R

are all diagonal, and all dark pions

are stable. On the other hand, if the U(1)D breaking e↵ect also contribute to the m , the

flavor symmetry is broken in general, and X
0
L,R

are no longer diagonal in general.

At low energies, the interactions of dark hadrons with SM particles come from the

dark current ⇥ SM current term in Eq. (2.13):

�
 
(eJµ

EML12 + ĝZ Ĵ
µ

Z
L22)L32

M
2
Z1

+
(eJµ

EML13 + ĝZ Ĵ
µ

Z
L23)L33

M
2
Z2

!
ĝDJDµ (4.9)

The interactions of the dark pions with SM particles can be obtained from Eq. (4.9):

�
 
(eJµ

EML12 + ĝZ Ĵ
µ

Z
L22)L32

M
2
Z1

+
(eJµ

EML13 + ĝZ Ĵ
µ

Z
L23)L33

M
2
Z2

!
ĝDTr(�aX

0
A)f⇡̂@µ⇡̂a (4.10)

Because ⇡̂’s only decay through axial vector currents, Jµ

EM does not contribute, and only

the axial part of the Z current contributes,

Ĵ
µ

Z
=

1

2

X

i

f̄i�
µ(vi � ai�5)fi, vi = T

3
Li � 2ŝ2WQi, ai = T

3
Li. (4.11)

The e↵ective Lagrangian for the dark pion decay is then

L⇡̂ decay =
1

2
ĝZ ĝD

 
L22L32

M
2
Z1

+
L23L33

M
2
Z2

!
Tr(�bX

0
A)f⇡̂@µ⇡̂b

X

i

T
3
Li(f̄i�

µ
�5fi)

=
@µ⇡̂b

f
(b)
a

X

i

T
3
Li(f̄i�

µ
�5fi). (4.12)

The e↵ective decay constant f (b)
a of ⇡̂b is given by

1

f
(b)
a

=
ĝZ ĝD

2

 
L22L32

M
2
Z1

+
L23L33

M
2
Z2

!
Tr(�bX

0
A)f⇡̂. (4.13)

Plugging in the expression for L22, L32, L23, L33 and using the relations between mass

eigenvalues and the mixings to simplify the result, one can find

L22L32

M
2
Z1

+
L23L33

M
2
Z2

=
1

M
2
Z1

"
(cos ⇠ + ŝW sin ⇠ tan�)

✓
sin ⇠

cos�

◆
+

M
2
Z1

M
2
Z2

(� sin ⇠ + ŝW cos ⇠ tan�)

✓
cos ⇠

cos�

◆#

=� �M̂
2

M
2
Z1
M

2
Z2

cos2 �
. (4.14)
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Therefore
1

f
(b)
a

= � ĝZ ĝD�M̂
2

2M2
Z1
M

2
Z2

cos2 �
Tr(�bX

0
A)f⇡̂. (4.15)

One can see that the dark pion decay require the mass mixing �M̂
2 6= 0. The kinetic mixing

only mixes the transverse modes of the gauge fields while the dark pions decay through the

longitudinal mode of the dark Z
0.

It is convenient to denote the dark hadron interactions with the SM fermions using

four-fermion couplings:

L4f �
X

i,j,f

C
ijff

V A
(Jµ

DV
)ij f̄�µ�

5
f+C

ijff

V V
(Jµ

DV
)ij f̄�µf+C

ijff

AA
(Jµ

DA
)ij f̄�µ�

5
f+C

ijff

AV
(Jµ

DA
)ij f̄�µf .

(4.16)

When the momentum exchange scale q
2 ⌧ MZ1 ,MZ2 , the size of the above four-fermion

couplings can be obtained from Eq. 2.13 as:

C
ijff

AA
= �

�af

2

✓
� �L22L32ĝZ ĝD

M
2
Z1

� �L23L33ĝZ ĝD

M
2
Z2

◆
= �

ĝZ ĝDT
3
Lf

2 cos2 �

�M
2

M
2
Z1
M

2
Z2

= C
ff

AA
,

(4.17)

C
ijff

V A
= C

ff

V A
= C

ff

AA
, (4.18)

C
ijff

AV
=

ĝZ ĝD(2ŝ2WQf � T
3
Lf

)�M2

2 cos2 �M2
Z1
M

2
Z2

� eQf ĝD

✓
L12L32

M
2
Z1

+
L13L33

M
2
Z2

◆

=
ĝZ ĝD(2ŝ2WQf � T

3
Lf

)�M2

2 cos2 �M2
Z1
M

2
Z2

+ eQf ĝD
tan�

cos�

✓
cos2 ⇠

M
2
Z2

+
sin2 ⇠

M
2
Z1

◆
= C

ff

AV
, (4.19)

and

C
ijff

V V
= C

ff

V V
= C

ff

AV
. (4.20)

The e↵ective decay constant f (b)
a is simply related to C

ff

AA
by f

(b)�1
a af = C

ff

AA
f⇡̂Tr(�b

X
0
A
) .

The calculation above only applies to the SM flavor index f is conserved. To study

the dark hadron production from SM flavor changing neutral currents (FCNC’s), the four-

fermion interaction above needs to be extended. Since the U(1)D gauge doesn’t introduce

any explicit SM flavor violation, the interaction between dark fermions and SM flavor f

and f
0 are introduced at the one-loop-level. Since only the left-handed SM fermions are

involved in EW loops, in the limit of q2 ! 0 the e↵ective coupling reads:

L4f,FCNC �
X

i,j,f,f 0

C
ijff

0

V L
(Jµ

DV
)ij f̄ 0�µPLf + C

ijff
0

AL
(Jµ

DA
)ij f̄ 0�µPLf , f

0 6= f . (4.21)

We followed the calculation in [15] and integrated out both Z1 and Z2. We also take the

approximation that only the top-loop contributions contribute significantly, which gives:

C
ijff

0

V L
=

ĝ
3
ĝDV

⇤
tf 0Vtf

128⇡2ĉW

�M
2

M
2
Z1
M

2
Z2


xt�+

�7xt + x
2
t

2(1� xt)
� 4xt � 2x2t + x

3
t

(1� x
2
t
)2

lnxt

�
, (4.22)

C
ijff

0

AL
= C

ijff
0

V L
. (4.23)
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• Dark pions decay requires mass mixing, .

• If no CP violation in the dark sector,

-  CP-odd, decay through 

-  CP-even, decays through Higgs

δM̂2 ≠ 0

̂π1, ̂π3 Z, Z′ 

̂π2

For ,sin χ = 0, M2
Z2

≪ M2
Z1

1
f (b)
a

≈
1

1.1 PeV ( ̂gDTr(σbX′ A)
0.1 ) ( |ξ |

10−2 ) ( f ̂π

1 GeV ) ( 20 GeV

MZ2
)

2

Replaced by  if MZ1
MZ2

≫ MZ1

14
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Dark Pion Decays
Exclusive decay rates from the data driven method 
(HC, Li, Salvioni, 2110.10691)

For ,m ̂π = 650 MeV, fa = 1 PeV, cτ ≈ 70 cm
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• Branching ratios:

16

 is always > few % below 3 GeV μ+μ−  dominates above 900 MeVπ+π−π0

Γ(a → K*+K*−) ≪ Γ(a → K*0K*0)

×

π+

π0

π−

π0
ρ+

a

Dark Pion Decays



Dark Pion Production
•  and  decays: dark showers at LHC and future 

colliders
Z Z′ 

• Meson ( ) FCNC decays for light enough dark 
pions, e.g.,  with long-lived 

- Beam dump experiment (CHARM)

- LHCb

- CMS data scouting

B, D, K
B → K(*)(χ → μμ) χ( = ̂π)

17



Meson FCNC Decays
• 2mμ ≲ ma ≲ 0.6 GeV:  fa ≳ 1.3 − 1.9 PeV (CHARM)

• 0.6 GeV  ≲ ma ≲ 1.1 GeV:  fa ≳ 0.6 − 0.8 PeV (LHCb)

• 1.1 GeV  ≲ ma ≲ 2.8 GeV:  fa ≳ 1.3 − 2.8 PeV (CMS)

18

• Proposed LLP experiments (FASER 2, CODEX-b, MATHUSLA) can 
extend the reaches.

J
H
E
P
0
1
(
2
0
2
2
)
1
2
2

FCNC decays can also produce the CP -even dark pions, through Higgs mixing. The
corresponding amplitudes are proportional to the Higgs penguin, resulting in [60, 61]

Leff ! 3
√
2GF

16π2
mdβ

v
d̄LαdRβs

(a)
θ π̂a

∑

q=u,c,t

m2
qV

∗
qαVqβ + h.c., (5.6)

and

Γ (B → Kπ̂a) =
m3

B

64πf0
(
m2
π̂

)2
∣∣∣∣∣
3V ∗

tsVtb

16π2
s(a)θ
v

m2
t

v2

∣∣∣∣∣

2(

1 − m2
K

m2
B

)2
λ1/2Kπ̂ ,

Γ (B → K∗π̂a)
Γ (B → Kπ̂a)

= A0
(
m2
π̂

)2

f0
(
m2
π̂

)2
λ3/2K∗π̂(

1 − m2
K

m2
B

)2
λ1/2Kπ̂

, (CP even) (5.7)

for the decay widths. Evaluating eqs. (5.5) and (5.7) we find

BR
(
B{+,0} → {K+π̂b,K

∗0π̂b}
)

≈ {0.92, 1.1}×10−8
(
103TeV
f (b)
a

)2

{λ1/2Kπ̂,λ
3/2
K∗π̂} ,(CP odd)

(5.8)

BR(B{+,0} → {K+π̂b,K
∗0π̂b})≈ {2.6, 3.3}×10−12

(
s(b)θ

3×10−6

)2

{λ1/2Kπ̂,λ
3/2
K∗π̂} ,(CP even)

where in the CP -odd case we have set M = 1 TeV in the logarithm.

5.1 Constraints and projected sensitivity

We now highlight a few implications for our parameter space, focusing mainly on mπ̂ > 2mµ.
The theoretical predictions in eq. (5.8) can be compared with the current BaBar [62] and
Belle [63] 90% CL bounds on invisible decays,

BR(B+ → K+νν̄) < 1.6 × 10−5 , BR(B0 → K∗0νν̄) < 1.8 × 10−5 . (5.9)

For CP -odd scalars, branching ratios at the 10−5 level require f (b)
a < 100 TeV, but in

this regime the dark pion lifetimes become sufficiently short to ensure that decays to SM
particles occur inside the detector (see figure 1 or 8), thus violating the search assumptions.

Therefore more relevant are searches for B → K(∗)(χ → µµ) with long-lived (scalar
or pseudoscalar) χ at LHCb [64, 65], as well as the re-interpretation in terms of these
decays [66] of results from the CHARM beam dump experiment [67]. In addition, CMS has
recently presented a novel search based on data scouting [68], setting limits on the inclusive
branching ratio for B → Xs(χ → µµ) [69]. In our setup this may be related to the exclusive
branching ratios via

BR(B → Xsa) = (4± 1) ×
[
BR(B → Ka) + BR(B → K∗a)

]
, (5.10)

as estimated from the observed values of BR(b → s%%) and BR(B → K(∗)%%) [70]. The
sizable uncertainty reflects the still-unsettled experimental status of these measurements.
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J
H
E
P
0
1
(
2
0
2
2
)
1
2
2

in ref. [56], leading to

Leff = GF√
2

g2

4π2 d̄LαγµdLβ
∑

q=c,t

V ∗
qαVqβ (5.1)

∑

i,k,j=1,2
ψ

′
iγ

µ v
2

2

(
(U †

LỸ
†)ik(Ỹ UL)kj
M2

k

PL+
(U †

RY
†)ik(Y UR)kj
M2

k

PR

)

ψ′
jD(xq,xu = 0;yk)+h.c.

where xq ≡ m2
q/m

2
W and yk ≡ M2

k/m
2
W (recall that the mass of Qk

u is simply Mk). For our
purposes we can safely take the large-yk limit of D,

D (xq,xu=0;yk → ∞)% xq

8(xq−1)2

[
−x2q

(
log yk

xq
−2
)
+xq

(
2log yk

xq
−7
)

−log yk
xq

+3logxq+5
]
.

(5.2)
If the k-dependence of the D function can be neglected (e.g., for M = M12), we arrive at
a simple expression for the relevant effective Hamiltonian,

Heff ⊃ GF√
2

g2

64π2 d̄LαγµdLβV
∗
tαVtβ

3∑

b=1
Tr
[
σb
(
A − Ã

)]
jµ5b

[
m2

t

m2
W

(

log M2

m2
t

− 2
)

+ 3
]

+ h.c.,

(5.3)
where only the first few terms of the dominant top loop were retained. The meson decay
amplitude is then, assuming factorization of the hadronic matrix elements into a SM factor
and a hidden factor,

〈π̂aX|Heff |B〉 = 〈π̂a|〈X|Heff |B〉|0〉

= ig2

64π2V
∗
tsVtb〈X|s̄LγµbL|B〉 pµπ̂

f (a)
a

[
m2

t

m2
W

(

log M2

m2
t

− 2
)

+ 3
]

, (5.4)

where we have focused on B → Xπ̂a decays with X = K,K∗, and applied eq. (3.6). For
the decay widths we find

Γ (B → Kπ̂a) =
m3

B

64πf0
(
m2
π̂

)2
∣∣∣∣∣
g2V ∗

tsVtb

64π2f (a)
a

[
m2

t

m2
W

(

log M2

m2
t

− 2
)

+ 3
]∣∣∣∣∣

2(

1 − m2
K

m2
B

)2
λ1/2Kπ̂ ,

Γ (B → K∗π̂a)
Γ (B → Kπ̂a)

= A0
(
m2
π̂

)2

f0
(
m2
π̂

)2
λ3/2K∗π̂(

1 − m2
K

m2
B

)2
λ1/2Kπ̂

, (CP odd) (5.5)

where λXπ̂ =
(
1− (mX+mπ̂)2

m2
B

)(
1− (mX−mπ̂)2

m2
B

)
. The log-enhanced contribution to Γ(B → Kπ̂a)

is in agreement with what one finds [48] from eq. (3.12), but the finite terms have an
important quantitative impact: for M = 1 TeV, retaining only the logarithmic piece
overestimates the rate by a factor ≈ 3. The definitions and numerical values of the form
factors f0, A0 are taken from the light-cone QCD sum rules analysis of ref. [57], with
fB→K
0 (0) ≈ 0.27 and AB→K

0 (0) ≈ 0.31. An expression analogous to the first line in eq. (5.5)
applies to K → ππ̂a, with the appropriate replacements of masses, CKM elements, and the
form factors available from lattice QCD with fK→π

0 (0) ≈ 0.97 [58].13
13Tree-level contributions to K → πa have also been considered [59], but are negligible here since the

ALP couples to fermions with universal strength (in absolute value).
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Dark Showers from Z decays
• LHCb search for displaced  (LHCb:2007.03923).X → μμ

• It tests a different combinations of model parameters from , which is 
constrained by FCNC decays.

fa
19
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Figure 7. Projection of the 90% CL LHCb sensitivity [84] to Z-initiated, muon-rich dark showers
for mπ̂ = 650 MeV (top) and mπ̂ = 1 GeV (bottom). The two minima of the exclusion contours
correspond to optimal sensitivity to decays of two dark pion species with different lifetimes, π̂1
and π̂3, while decays of the longest-lived π̂2 are neglected. The current exclusion is shown by the
black curve, while the widths of all other bands are obtained by varying the single-DV efficiency
εµµ ∈ [0.4, 0.8]. Brown lines indicate the relation between BR(Z → ψ′ψ

′) and τπ̂1 obtained from
benchmark scenario 1, for representative choices of fπ̂.

In addition to the single-DV analysis we consider requiring 2 DVs per event, assuming
zero background in this case. The corresponding exclusions, shown by the orange and green
bands in figure 7, turn out to be weaker than the single-DV ones. This is explained by the
fact that the background is already very suppressed for 1 DV, hence removing it completely
results in a limited gain, and by the additional efficiency cost.

The potential sensitivity of LHCb to heavier pseudoscalars, with masses above a few
GeV, has also been discussed in several final states [93].

6.2 ATLAS and CMS prospects
In the light of the results shown in figure 7, and in particular the correlation observed in
our framework between BR(Z → ψ′ψ

′) and the dark pion lifetimes, a priori ATLAS and
CMS may lead to dramatic improvements in the region τπ̂ ∼ 0.1 - 1 m, thanks to their larger

– 28 –

J
H
E
P
0
1
(
2
0
2
2
)
1
2
2

Figure 7. Projection of the 90% CL LHCb sensitivity [84] to Z-initiated, muon-rich dark showers
for mπ̂ = 650 MeV (top) and mπ̂ = 1 GeV (bottom). The two minima of the exclusion contours
correspond to optimal sensitivity to decays of two dark pion species with different lifetimes, π̂1
and π̂3, while decays of the longest-lived π̂2 are neglected. The current exclusion is shown by the
black curve, while the widths of all other bands are obtained by varying the single-DV efficiency
εµµ ∈ [0.4, 0.8]. Brown lines indicate the relation between BR(Z → ψ′ψ

′) and τπ̂1 obtained from
benchmark scenario 1, for representative choices of fπ̂.

In addition to the single-DV analysis we consider requiring 2 DVs per event, assuming
zero background in this case. The corresponding exclusions, shown by the orange and green
bands in figure 7, turn out to be weaker than the single-DV ones. This is explained by the
fact that the background is already very suppressed for 1 DV, hence removing it completely
results in a limited gain, and by the additional efficiency cost.

The potential sensitivity of LHCb to heavier pseudoscalars, with masses above a few
GeV, has also been discussed in several final states [93].

6.2 ATLAS and CMS prospects
In the light of the results shown in figure 7, and in particular the correlation observed in
our framework between BR(Z → ψ′ψ

′) and the dark pion lifetimes, a priori ATLAS and
CMS may lead to dramatic improvements in the region τπ̂ ∼ 0.1 - 1 m, thanks to their larger
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From Z decay only:

BR(Z → ψ ψ̄) = 0.27ξ2 ( gD

gZ )
2

∑
i

(x2
iL + x2

iR)



Dark Showers from Z decays
• At LHC, the dark shower events from Z decays are relatively soft 

without hard objects. They are hard to trigger at ATLAS and CMS.

• CMS data scouting search for displaced  (2112.13769).X → μμ
From Z decay only:

10-3 10-2 0.1 1 10 102
10-9

10-8

10-7

10-6

10-5

Figure 2: Various limits deduced from the CMS dimuon scouting data [18], using the

same benchmark dark pion model described in [7]. All limits in solid curves correspond to

101 fb�1, while HL-LHC projections are given in dashed curves. In this method, each truth-

level dimuon vertex form simulated pp ! Z ! dark shower sample acquires a trigger and

detector e�ciency according to its leading muon pT , total pT and transverse displacement

lxy. No isolation requirements are imposed as the dimuon vertex in dark showers are not

necessarily isolated. The green curve is acquired by comparing the observed 95% C.L. limit

on the number of signal events in several aggregate signal regions with the simulated signal

yields. The solid blue curve, instead, is calculated from the expected background level

reported in [18] with a 3% systematic uncertainty for each lxy bin. We take the maximum

significance among di↵erent signal regions in both curves instead of combining them. The

red(orange) curves are the limit from 2DV (3DV) analyses, respectively. In both analyses,

all lxy 2 [0.2, 11] cm bins are combined, and we assume there are no backgrounds. The

limit deduced from Poisson statistics and single-vertex e�ciency is also shown in darker

colors, agreeing reasonably with the 2DV curve (red solid curve). In contrast, the 3DV limit

(solid orange curve) from the signal samples are weaker than the one projected assuming the

distribution of DV in dark shower events are uncorrelated (dark orange curve). Di↵erent

scenarios of HL-LHC bounds are projected from the current LHC limits, shown as several

dashed curves with the same color. Here we assume the precision is still statistics dominated

and the signal/background e�ciencies are of the same level thus the sensitivity grows withp
L.

The mass matrix of Zµ-Z 0
µ,

1

cos2 �

 
M̂

2
Z
cos2 � �M̂

2 cos�+ M̂
2
Z
ŝW sin� cos�

�M̂
2 cos�+ M̂

2
Z
ŝW sin� cos� M̂

2
Z0 + M̂

2
Z
ŝ
2
W

sin2 �+ 2�M̂2
ŝW sin�

!
(A.4)
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current limit (1DV)

HL-LHC 
straightforward 
projection

2 DV analysis

3 DV analysis
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Dark Showers from Z decays
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Figure 3: Similar to Fig. 2 but comparing di↵erent limits at HL-LHC. Dashed curves are

the same as in Fig. 2, representing the straightforward bounds by increasing luminosity.

On the other hand, the solid curves stand for bounds with potential improvements due

to hardware upgrades and advanced algorithms. The three colors stand for 1DV(cyan),

2DV (red), and 3DV(orange), respectively. To estimate the new e�ciency level, we first

assume the e↵ective pile-up value hµi is kept the same at the high-luminosity phase due to

the timing layers [19]. We also assume the dimuon vertex trigger/reconstruction e�ciency

is the product of two independent parts, one depending on µ momenta and the other

depending on lxy only. The momenta part is similar to that of [20]. In particular, once the

leading pTµ > 5 GeV, the subleading pTµ > 3 GeV, and both have ⌘ < 2.4. The radial

part is still arbitrary (extended to 90 cm) as the current improved ATLAS algorithm only

extends to lxy = 30 cm [21]. Both 2DV and 3DV are still background free. The lxy < 11 cm

background level for the 1DV search is increased by the same ratio that the signal e�ciency

increases. For 90 > lxy > 11 cm, we assume the background decreases as l�2.5
xy .

is diagonalized to obtain the mass eigenstates (Z1µ, Z2µ) by
 
Z1µ

Z2µ

!
=

 
cos ⇠ sin ⇠

� sin ⇠ cos ⇠

! 
Zµ

Z
0
µ

!
(A.5)

with ⇠ given by Eq. (2.6). From these we can derive the transformation matrices L and

L
�1 in Eq. (2.8). The mass eigenvalues are, defining the mass matrix (A.4) as

 
a b

b c

!
,

M
2
Z1,2

=
1

2

⇣
a+ c± sgn(a� c)

p
(a� c)2 + 4b2

⌘
. (A.6)

In terms of MZ1 , MZ2 , ⇠, the mass matrix (A.4) takes the form
 
M

2
Z1

cos2 ⇠ +M
2
Z2

sin2 ⇠ (M2
Z1

�M
2
Z2
) sin ⇠ cos ⇠

(M2
Z1

�M
2
Z2
) sin ⇠ cos ⇠ M

2
Z1

sin2 ⇠ +M
2
Z2

cos2 ⇠

!
. (A.7)
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*  decays are still under study.Z′ 
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Summaries

• The constraints a dark  in the range of a few 
tenth to a few hundred GeV are rather mild. It 
can be an interesting target for upcoming 
searches.

• The dark  mixing can be responsible for 
dark pion decays, which give interesting 
collider signals, including dark showers and 
displaced decays.

Z′ 

Z′ − Z

22


