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Motivation

Newtonian dynamics of two-body inspiral problem is integrable.

Once post-Newtonian (PN) corrections are included, the situation is not so
clear, e.qg., binary black holes (BBH).

If not integrable, one would expect chaotic behavior (dense unstable orbits in
phase space/resonant islands), possibly reflected in the decoherence of GW,
l.e., glitches.

If Lyapunov time scale << chirp time scale, need huge template banks for
detecting GWSs.

5X(t) = L(t)6X(0)

L(t) = diag(e M f(1),0,0,--- ,0) —

~ Oh(X)

Sh(t) = —=

0X (t) ~ eMg(t)




GW signature of EMRI
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FIG. 1. Powerspectral density of a Kerr (green), anon-Kerr (red),

» : : Period f a def d-Kerr (left) and -Ker™NEMRI (right) GW, plotted below th t inent GW peak
and a deformed-Kerr (blue) EMRI consisting of a light companion eriodogram of a deformed-Kerr (left) and a non-Ke (right) plotied below the most prominen pea

deformed-Kerr: intergable perturbation from Kerr metric

non-Kerr: nonintegrable perturbation from Kerr metric GW glitch



Controversy on integraibility of PN orbits

 Debates on the (non-)integrability of inspiral dynamics of spinning binary

come a long way since the year 2000. Levin 2000, Schnittman+Rasio 2001, Cornish+Levin 2002,

2003, Hartl+Buonanno 2005, Gopakumar+Konigsdorffer 200542, Wu+Xie 2007, Huang+Ni+Wu 2014, Wu+Huang 2015,
Huang+Wu 2016

* The analytical study is technically hard to find the symplectic structure for
the PN Hamiltonian. Up to 2020, some subset of 2PN is found to be

integ rable. Tanay+Cho+Stein 2021, Tanay+Stein+Ghersi 2021, Cho+Lee 2019, Wu+Xie 2010, Wu+Zhong 2011

 The numerical study Is to calculate the Lyapunov exponents, which is
computationally costly due to the complicated PN dynamics. The numerical
Inaccuracy iIs the main source of controversy.

* |n this work, we find a reliable and “non-perturbative” way (i.e., EOB) to pin
down the issue by finding the resonant islands.
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EOB dynamics



EOB dynamics

EOB formalism is to map PN dynamics to effective-one-body dynamics in a non-flat background.
The procedure is outlined as follows:

1. Expand the PN Hamiltonian in terms of the dynamical invariants such as the reduced radial
action [, and angular momentum J.

2. Expand a probe Hamiltonian in deformed Kerr metric ansatz in a similar way.
3. Relate the probe Hamiltonian to the PN Hamiltonian to determine the metric ansatz.

4. The above mapping defines a canonical transformation between the ADM coordinates for the
PN dynamics and the coordinates of the EOB metric.

> One can also choose the dynamical invariant for the unbounded orbits such as scattering
angles and fits to the post-Minkowskian potential from scattering amplitudes. pamgaard+vanhove 2021



Post-Newtonian (PN) Dynamics

PN Hamiltonian is complicated: (2PN COM Hamiltonian of 2 non-spinning
particles in ADM coord.)
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e Solving the 1st principle PN dynamics is costly. This motivates to find the
equivalent effective one-body (EOB) dynamics in non-flat background.
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H(,,J)
The form of the Hamiltonian is coordinate dependent and it is hard to compare.

One way out is to express it in terms of dynamical invariants such as [, J .

Up to 2PN, the reduced radial action is (a = GM,u) Buonanno+Damour 1999
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This is the energy spectrum of the PN atom.

The probe Hamiltonian in the EOB metric can be expressed in a similar form.



EOB Map
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The energy of the reduced test-body: F g = vu — E = M \/ 14 (Fegr — 1)
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Test-body dynamics:  ¢'“(q)p,p, + et =0 with Eog = —po

2 2 2 | 2702 b b
dsig = —A(r)dt” + B(r)dr* + r=dS) Ay =142+ 24 B B =14 o4 24
c-r c'Tr c-r c-r c'r

> H.g = ¢ \/A(r) [1 | 12;2 | (n’ ;21)/)2 (Béfr) — 1)}

. A . M 7 .
Task: Fix a;,b; by matching H(q',p’) to Hros(a,p)= M\/ 1+ I” (He(a,p) — 1)
in the space of dynamical invariants, i.e., [, J.
pidq" + ¢'dp’ = dG(¢',p)

> CL1:—2, CLQZO, 0,3:277, b1:2, b2:4—677 and , y 1 , 1 /
G(q,p) =q"pi + C—2G1PN(Q ,p) + C_4G2PN(Q D)



Including spins and Higher PN

* However, if the EOB metric still preserves the symmetrical symmetry, then the geodesic motion is planar and
cannot be chaotic.

« Once the component spins S, , are turned on, H_; = H"> + H® pamour 2001, Barausse+Buonanno 2010, 2011
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* For simplicity, we will turn off S* by choosing the appropriate A .. It is also automatically ensured by MPD
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We also restrict to 2PN so that 0;p\(p) = 0 so that the resultant EOB dynamics will be “a non-spinning particle of
mass i moving in a deformed Kerr background”. As we will see the geodesic dynamics is hon-integrable.



2PN EOB metric: deformed Kerr

ds’ = g,dt* + g,,dr* + gyydy2 -+ g(/,(/)d(ﬁz + 2g,4dtdep.
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the geodesic dynamics for H.; and Hp 5
are equivalent up to a time rescaling.

3. We just consider geodesic dynamics for ﬁeff

by setting 11 = 1, and the energy E and
azimuthal angular momenta LZ are conserved.

4. The reduced Hamiltonian constraint:
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(Non-)Integrability



A dynamical system is integrable:

(Non-)Integrable orbits

of conserved charges = # of d.o.f.

 Non-spinning particle moving in Kerr black hole is integrable: 4 conserved charges = mass,

E, L, and Carter constant C

» The generator for C is a Killing tensor or Killing-Yano tensor of rank 2.

 For Boyer-Lindquist type coord (7, x, ¢, t): Papadopoulos+Kokkota 2018

If

- The Hamiltonian constraint is separable.

A nontrivial rank 2 Killing tensor




Apply PK to 2PN EOB

* Apply PK criterion to the 2PN EOB metric, we have

X2
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 PK fails by the last term ~ 6(3a?%). It implies no rank 2 Killing tensor exists,
and the dynamics is non-integrable if there exists no higher rank Killing
tensor.



Resonant Islands




Resonant Orbits

Brink+Geyer+Hinderer 2015

For a bound Kerr orbit: (j—’”)2 + V(r) = 0, (j—y)2 + V,(») = 0. The orbits oscillate between the

Tm M

turning points in both r and y directions with frequency o, and w,, respectively.

The orbits can be visualized as trajectories on a torus with Its size determined by E, L,
and C. If w,/w, Is irrational enough, the orbit will cover the torus densely, I.e., KAM tori.

Otherwise, the orbits are called resonant orbits. These orbits are unstable when
subjected to non-integrable perturbations.

KAM theorem: The KAM tori will be smoothly deformed provided w,/w, Is irrational

enough and the perturbation is weak. This implies that the resonant orbits could be
destroyed.



Poincare (surface of) section

 One way to characterize the chaotic behavior is the Poincare section/map
of the phase space, invariant curves on the (r, 7) plane with y > 0.

e The invariant curves are continuous closed curves for the Kerr orbits, I.e.,
the periodic motion is a discrete map on an invariant curve.

* For the non-Kerr orbits, there exist Birkhoff (chains of) islands around the

resonant Kerr orbits. Apostolatos+Lukes-Gerakopoulos+Contopoulos 2009, 2011
Destounis+Suvorov+Kokkotas 2020
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Rotation Curve

One can characterize the Birkhoff islands by tracing the piercings on the Poincare section.

1 N
Precisely, define the rotation number as follows: 1, = lim Z J. where 9, = the angle

N— o0 27TN 0
=

between the position vectors of the i-th and (i + 1)-th piercings of a given orbit on the Poincare section.

Scanning 1, along the r-axis (y = const. ), we can construct the rotation curve vy(r).

The rotation curve is continuous for Kerr orbits, but shows plateaux at low rational values.
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Our Results



Chaos of EOB dynamics

 From PK test, we see that the EOB dynamics can be non-integrable, thus
yields non-Kerr orbits. We verify this is indeed the case.
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Poincaré surface of section for geodesic motions in the EOB metric (16) for the spin parameter a = 0.67 M, symmetric mass

ratio n = 0.15, energy E = 0.942, and azimuthal angular momentum L, = 2.76 M. (a) Birkhoff islands (blue, 1/2 resonance; orange,
2/3 resonance) and one KAM curve (green). The vertical magenta line indicates the event horizon. (b) Enlargement of the left branch of
the 1/2-resonant islands.
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ion Curve
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FIG. 4. (a) The rotation curve drawn along the magenta dashed line in Fig. 3(b). The plateau has a constant rotation number vy = 1/2
and corresponds to the 1/2-resonant Birkhoff islands shown in Fig. 3. (b) The rotation curve drawn along a horizontal line in Fig. 3(a)
that crosses the upper-left branch of the 2 /3-resonant islands. The plateau appears as shown in both cases because the rotation number
remains a constant when crossing an island.
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FIG. 5. Poincaré surface of section for geodesic motions in the EOB metric (16) for the spin parameter a = 0.92 M, symmetric mass
ratio n = 0.15, energy E = 0.9367, and azimuthal angular momentum L, = 1.7542 M. (a) KAM curves and Birkhoff islands (2/3
resonance) for initial conditions (rg, yo, 7o) = (1.493 M,0.1,0) (blue), (1.55 M, 0,0) (orange), and (4 M,0,0) (green). (b) Enlarge-
ment of the 2/3-resonant Birkhoff island (blue) with initial condition (rg, g, 7o) = (1.493 M,0.1,0). A nearby KAM curve is also
shown (orange).




Birkhoff Islands

> q‘~\~‘\hh~\\- —

0.70 .
N

0.65f
0.0r | - 0.60 |

0.55 |

Vg 0.50 |

0.45 |

0.40

—0.5¢

=

- 0.35 |

SS————— R 0.301

4

1.16 1.18 1.20 1.22 1.24 1.26 1.28 1.3
r/M
_1 O ] L L N 1 ) ) L 1 L L L 1 ) ) L 1 N L L ] ) L L 1 L ) L ]

r/M

FIG. 8. Birkhoff chains of islands for 2PN Hamiltonian for # = 0.15 and a = 0.86 M. Inset: Enlargement of the islands on the left
edge of the Poincaré surface of section, which consists of 2/3 (blue), 1/2 (orange), 2/5 (red), and 1/3 resonances (green).
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Strength of Chaos

e As seen that the PK breaking terms ~ 6(ya?), here shows some cases for
a....(n) below which the plateau is too thin ( < 1073Mm).
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FIG. 10. The critical spin a.; for some values of the symmetric mass ratio n (black points) upon fixing E = 0.9367 and
L, =1.7542 M. The points fit very well with a linear function (blue dashed line). Below the blue dashed line or the gray curve, the
leftmost 2/3-resonant island either disappears or becomes too small to measure. Also, the extremality bound a.,(7) is shown by the
purple curve. Note that a_; as a function of # depends also on the choice of E and L,. We can also observe that the case with closed CZV



Preliminary 3PN result
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FIG. 11. (a) The 2/3 Birkhoff islands for the 3PN effective metric for a = 0.78 M and n = 0.01. The initial conditions for the islands
are E=0.942, L, =2.87 M, and (rg, yy, 7y) = (12.02M,0,0). The magenta line indicates the event horizon. (b) The rotation curve
drawn along a horizontal line that crosses the rightmost branch of the islands. The plateau with vy = 2/3 can be identified.



Conclusion

In this work, we find a reliable way to check the (non-)integrability of
inspiral dynamics of spinning binary.

Adopt 2PN EOB formalism and the Ponicare-Birkhoff map, we can
conclude that the 2PN inspiral dynamics of spinning binary is chaotic.

The chaotic behaviors locate on some isolated islands in phase space.

The compactness of the Birkhoff islands is challenging for the detection of
chaotic behaviors in the emitted gravitational waves.

Thanks for [istzning!



