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My motivation in this talk:


I would like to explore possible interplay


between quantum gravity and pheno (particle physics, cosmology).

Quantum Gravity


ex. string theory
particles & cosmo

experimental inputs

hint about mysteries

(inflation, DM, DE …)

Lessons from string theory as a quantum gravity theory!



energy scale

1019 GeV

104 GeV Large Hadron Collider

≲ 1014 GeV inflation

string theory

Planck scale Quantum Gravity

UV completion

Standard Model and Beyond + General Relativity
UV complete UV incomplete!


(low-energy EFT)

Particle Physics & Cosmology (QFT + GR)
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Particle Physics & Cosmology based on string theory

energy scale

1019 GeV

104 GeV Large Hadron Collider

≲ 1014 GeV inflation

string theory

Planck scale

UV completion

Standard Model and Beyond + General Relativity
UV complete UV incomplete!


(low-energy EFT)

extra dimensions

brane configurations

string theory (1+9 dims.) Q. What kind of models of particle physics & cosmology are realized in string theory?


 → generic predictions/typicality of string theory, more generally quantum gravity



An interesting lesson:


There exist non-trivial consistency conditions in QG

that are not present in non-gravitational theories.


 - absence of (exact) global symmetries


 - subPlanckian axion decay constant,


 - weak gravity conjecture, distance conjecture, …


→ Various proposals for such Swampland conditions.



The history says that consistency of scattering amplitudes is 

useful to discuss UV completion of IR EFTs.


- prediction of weak bosons, Higgs boson, …


- string theory emerged in the context of the S-matrix theory.


Is the S-matrix theory useful for the Swampland program?



In this talk, I advertise my works in the past two years


- arXiv:2104.09682 w/Katsuki Aoki (YITP), Tran Quang Loc (Cambridge),


                                     Junsei Tokuda (Kobe → IBS)


- arXiv:2205.12835 w/Sota Sato (Kobe), Junsei Tokuda (Kobe → IBS)


See also arXiv:2105.01436 w/Junsei Tokuda (Kobe → IBS)


on possible implications of the so-called positivity bounds.
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Not every EFT is UV completable even in non-gravitational theories.


A famous criterion is positivity bounds on IR scattering amplitudes.



UV completion

UV complete theory

low-energy EFT

(non-renormalizable)

ex. Euler-Heisenberg :


ℒ = −
1
4

F2
μν + α1(FμνFμν)2 + α2(Fμν F̃ μν)2 + ⋯

Positivity Bounds [Adams et al ‘06]

UV theory

energy

0 γ

Λ

Q. Which parameter region is UV completable?


cf.  if the UV theory is QEDα1 =
e4

1440π2m4
, α2 =

7e4

5760π2m4



Positivity Bounds [Adams et al ‘06]

α1

α2

UV completable

no healthy UV 
completion

Dark region “swampland” cannot be


embedded into UV theories with


1. unitary (cross section > 0)


2. analyticity (cf. causality)


3.  for 
 ※ guaranteed by locality (Froissart bound)

|ℳ(s, t = 0) | < s2 s → ∞
0

I skip its derivation, but provide an intuitive explanation w/generalization.



essence of positivity bounds can be captured by the Wilsonian RG picture



Wilsonian RG picture

EFT after integrating out UV modes  ( : cutoff):
E > Λ Λ

ℒ = −
1
4

F2
μν − ℒcharged,E<Λ + α1(Λ)(FμνFμν)2 + α2(Λ)(Fμν F̃ μν)2 + ⋯

energy

0 γ

e

W±

Λ

αi

me mW
0

monotonically increases from UV to IR


(monotonically decreases from IR to UV)

 in UV theoryαi = 0



We can use dispersion relation to construct a monotonic function


of the “cutoff” scale  from scattering amplitudes.Λ



Dispersion relation

Consider an s-u crossing amplitude of  scattering in the forward limit,


whose low-energy expansion is of the form .

Then, the dispersion relation reads .

γγ → γγ

ℳ(s, t = 0) =
∞

∑
n=0

a2ns2n

a2 =
2
π ∫

∞

m2
th

ds
Imℳ(s, t = 0)

s3



Dispersion relation

Define a function .


 -  is defined in terms of scattering amplitudes below the “cutoff” scale .

 -  monotonically decreases as  increases, since .


Then, the dispersion relation implies .


 -  if the forward amplitude is bounded by .

B(Λ) := a2 −
2
π ∫

Λ2

m2
th

ds
Imℳ(s, t = 0)

s3

B(Λ) Λ
B(Λ) Λ Imℳ(s, t = 0) ≥ 0

B(Λ) =
2
π ∫

∞

Λ2

ds
Imℳ(s, t = 0)

s3
≥ 0

lim
Λ→∞

B(Λ) = 0 s2

Consider an s-u crossing amplitude of  scattering in the forward limit,


whose low-energy expansion is of the form .

Then, the dispersion relation reads .

γγ → γγ

ℳ(s, t = 0) =
∞

∑
n=0

a2ns2n

a2 =
2
π ∫

∞

m2
th

ds
Imℳ(s, t = 0)

s3



Λ

B(Λ)

me mW
0

monotonically increases from UV to IR


(monotonically decreases from IR to UV)

lim
Λ→∞

B(Λ) = 0

energy

0 γ

e

W±

Analogy with Wilsonian RG



Improved positivity bounds [Bellazini ’16, de Rham et al ’17]:


Identify the EFT cutoff by evaluating  and extrapolating from IR to UV!B(Λ)



B(Λ)

Λ0 Λ*

- The EFT breaks down once  becomes negative.


   →  defines the maximum cutoff .


- UV completion is required below .

B(Λ)

B(Λ*) = 0 Λ*

Λ*

B(Λ) := a2 −
2
π ∫

Λ2

m2
th

ds
Imℳ(s, t = 0)

s3

a2

mth

Improved Positivity Bounds



B(Λ)

Λ0 Λ*

- The EFT breaks down once  becomes negative.


   →  defines the maximum cutoff .


- UV completion is required below .

B(Λ)

B(Λ*) = 0 Λ*

Λ*

B(Λ) := a2 −
2
π ∫

Λ2

m2
th

ds
Imℳ(s, t = 0)

s3

a2

mth

Improved Positivity Bounds

UV completion!



It would be nice if we can apply those techniques to the Swampland Program.



Recent studies on gravitational EFTs show


that positivity bounds hold even in gravity theories at least approximately.

See, e.g., Hamada-TN-Shiu ’18, Herrero-Valea et al ’20, Bellazzini et al’19,


Alberte et al ’20, Tokuda-Aoki-Hirano ’20, Arkani-Hamed et al ’20, Caron-Huot et al ’21.



# For concreteness, let us imagine the graviton-photon EFT:


 

 - the IR expansion includes graviton poles


  .


  ※ I ignore massless loops for simplicity [cf. Herrero-Valea et al ’20].  


 - in the forward limit, the t-channel graviton exchange dominates:


   .


  ※ The residue of the t-channel pole is  due to the spin 2 nature of graviton.  


  ※ Positivity of the  coefficient does not follow in a straightforward manner.

S = ∫ d4x −g [ M2
Pl

2
R −

1
4

FμνFμν + α1(FμνFμν)2 + α2(Fμν F̃ μν)2 + ⋯]

ℳ(s, t) =
su

M2
Plt

+
tu

M2
Pls

+
ts

M2
Plu

+∑
n,m

cn,m sntm

ℳ(s, t) ≃ −
s2

M2
Plt

+∑
n

cn,0 sn + 𝒪(t)

s2

s2
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FIG. 3. Feynman diagrams relevant for MWeak.

derivative operators representing corrections from (un-
known) UV physics, which will be taken care of in the
following discussion. As we will see, they turn out to be
irrelevant for our purpose except for the QED case.

Because the SM is a renormalizable theory, the SM am-
plitude satisfies the twice-subtracted dispersion relation,
meaning that the relations

B(2)
i (⇤) =

4

⇡

Z 1

⇤2

ds0
ImAi(s0 + i✏)

s03
(8)

have to hold for i = QED, Weak, and QCD. Here,
Ai(s) := Mi(s, t = 0) is the forward limit amplitude.

The relations (8) conclude B(2)
i (⇤ ! 1) = 0. The same

relation does not need to apply to the GR sector, how-
ever, because GR is not UV complete; as we will see,

B(2)
GR(⇤ ! 1) ! constant < 0. As ⇤ increases, the GR

contribution eventually dominates over the SM contribu-
tions, leading to violation of (6). The maximum cuto↵
scale of the SM coupled to GR is determined when the
inequality (6) is saturated.

Positivity in QED.— We begin with the light-by-light
scattering in QED coupled to GR which was discussed
recently in [25]. The leading QED contribution is the
one-loop diagram shown in the first diagram of Fig. 2.
The forward limit amplitude is given by

AQED ⇡ �8↵2

✓
6 + ln2

m2
e

�s
+ 2 ln

m2
e

�s

◆
+ (s $ �s)

(9)

in the high-energy limit |s| � m2
e, where ↵ = e2/4⇡ is the

fine-structure constant. B(2)(⇤) from the QED process
at one-loop level is

B(2)
QED ⇡

64↵2

⇤4

✓
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◆
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FIG. 4. Feynman diagrams relevant for MQCD.

for ⇤ � me. Regarding MGR, we have the tree and one-
loop diagrams up to O(M�2

Pl ) as shown in Fig. 2. The
tree level (pole) contribution is cancelled with the high-
energy integral of RHS of (4). As a result, the one-loop
diagram is the leading gravitational contribution to the
bound (6). In the high-energy limit, we obtain

B(2)
GR ⇡ �

22↵

45⇡m2
eM

2
Pl

. (11)

Whereas B(2)
QED vanishes as ⇤ ! 1, B(2)

GR approaches
a negative constant in the limit ⇤ ! 1. This is why
we obtain a nontrivial cuto↵ scale from (approximate)
positivity bounds.

We remark that the result (11) can be used even in
the later analysis beyond QED. In general, the one-loop

contribution to B(2)
GR from charged particles should be

proportional to e2/M2
Pl and the dimensional analysis con-

cludes B(2)
GR / e2/(m2M2

Pl), where m is the mass of the
propagating particle in the loop. Therefore, the lightest
charged particle should provide the dominant contribu-

tion to B(2)
GR. We thus take into account the electron loop

only to compute B(2)
GR throughout this letter.

Now we discuss implications of the gravitational pos-
itivity bound (6). First, we can simply discard the
O(M�2

Pl M
�2
s ) uncertainty in (6) because the GR contri-

bution (11) is much larger than the uncertainty. Second,
as we mentioned earlier, there are potential higher deriva-
tive corrections that are originated from UV physics
above the cuto↵ scale ⇤. From the EFT perspective,

its contribution to B(2) can be estimated as B(2)
UV = ↵UV

⇤4 ,
where |↵UV| . 1 characterizes the size of interactions at
the scale ⇤.

All in all, the gravitational positivity implies the bound

B(2)
QED +B(2)

UV +B(2)
GR > 0, yielding

64↵2

⇤4

✓
ln

⇤

me
�

1

4

◆
+

↵UV

⇤4
>

22↵

45⇡m2
eM

2
Pl

. (12)

If the first term is dominant, we have the same bound
as [25], ⇤ .

p
emeMPl. On the other hand, if the second

term is dominant and ↵UV ⇠ 1, we find ⇤ .
p

meMPl/e,
which is the one obtained in [18] from a slightly di↵erent
setup (see footnote 2). In either case, the typical size is
⇤ < ⇤QED ⇠ 108GeV which is regarded as the maximum
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derivative operators representing corrections from (un-
known) UV physics, which will be taken care of in the
following discussion. As we will see, they turn out to be
irrelevant for our purpose except for the QED case.

Because the SM is a renormalizable theory, the SM am-
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meaning that the relations

B(2)
i (⇤) =

4

⇡

Z 1

⇤2

ds0
ImAi(s0 + i✏)

s03
(8)

have to hold for i = QED, Weak, and QCD. Here,
Ai(s) := Mi(s, t = 0) is the forward limit amplitude.

The relations (8) conclude B(2)
i (⇤ ! 1) = 0. The same

relation does not need to apply to the GR sector, how-
ever, because GR is not UV complete; as we will see,

B(2)
GR(⇤ ! 1) ! constant < 0. As ⇤ increases, the GR

contribution eventually dominates over the SM contribu-
tions, leading to violation of (6). The maximum cuto↵
scale of the SM coupled to GR is determined when the
inequality (6) is saturated.

Positivity in QED.— We begin with the light-by-light
scattering in QED coupled to GR which was discussed
recently in [25]. The leading QED contribution is the
one-loop diagram shown in the first diagram of Fig. 2.
The forward limit amplitude is given by
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for ⇤ � me. Regarding MGR, we have the tree and one-
loop diagrams up to O(M�2

Pl ) as shown in Fig. 2. The
tree level (pole) contribution is cancelled with the high-
energy integral of RHS of (4). As a result, the one-loop
diagram is the leading gravitational contribution to the
bound (6). In the high-energy limit, we obtain

B(2)
GR ⇡ �

22↵

45⇡m2
eM

2
Pl

. (11)

Whereas B(2)
QED vanishes as ⇤ ! 1, B(2)

GR approaches
a negative constant in the limit ⇤ ! 1. This is why
we obtain a nontrivial cuto↵ scale from (approximate)
positivity bounds.

We remark that the result (11) can be used even in
the later analysis beyond QED. In general, the one-loop

contribution to B(2)
GR from charged particles should be

proportional to e2/M2
Pl and the dimensional analysis con-

cludes B(2)
GR / e2/(m2M2

Pl), where m is the mass of the
propagating particle in the loop. Therefore, the lightest
charged particle should provide the dominant contribu-

tion to B(2)
GR. We thus take into account the electron loop

only to compute B(2)
GR throughout this letter.

Now we discuss implications of the gravitational pos-
itivity bound (6). First, we can simply discard the
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Pl M
�2
s ) uncertainty in (6) because the GR contri-

bution (11) is much larger than the uncertainty. Second,
as we mentioned earlier, there are potential higher deriva-
tive corrections that are originated from UV physics
above the cuto↵ scale ⇤. From the EFT perspective,

its contribution to B(2) can be estimated as B(2)
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the scale ⇤.

All in all, the gravitational positivity implies the bound

B(2)
QED +B(2)

UV +B(2)
GR > 0, yielding

64↵2

⇤4

✓
ln

⇤

me
�

1

4

◆
+

↵UV

⇤4
>

22↵

45⇡m2
eM

2
Pl

. (12)

If the first term is dominant, we have the same bound
as [25], ⇤ .

p
emeMPl. On the other hand, if the second

term is dominant and ↵UV ⇠ 1, we find ⇤ .
p

meMPl/e,
which is the one obtained in [18] from a slightly di↵erent
setup (see footnote 2). In either case, the typical size is
⇤ < ⇤QED ⇠ 108GeV which is regarded as the maximum

FIG. 3. Feynman diagrams relevant for MWeak.

computed accordingly. In general, EFT must contain
higher derivative operators representing corrections from
UV physics, which will be taken care of in the following
discussion. As we will see, they turn out to be irrelevant
for our purpose except for the QED case.

Because the SM is a renormalizable theory, the SM am-
plitude satisfies the twice-subtracted dispersion relation,
meaning that the relations

B(2)
i (⇤) =

4

⇡

Z 1

⇤2

ds0
ImAi(s0 + i✏)

s03
(8)

have to hold for i = QED, Weak, and QCD. Here,
Ai(s) := Mi(s, t = 0) is the forward limit amplitude.

The relations (8) conclude B(2)
i (⇤ ! 1) = 0. The same

relation does not need to apply to the GR sector, how-
ever, because GR is not UV complete; as we will see,

B(2)
GR(⇤ ! 1) ! constant < 0. As ⇤ increases, i.e.,

as the SM coupled to GR is extrapolated to a high-energy
scale, the GR contribution eventually dominates over the
SM contributions, leading to violation of (6). The maxi-
mum cuto↵ scale of the SM coupled to GR is determined
when the inequality (6) is saturated.

Positivity in QED.— We begin with the light-by-light
scattering in QED coupled to GR which was discussed
recently in [25]. The leading QED contribution is the
one-loop diagram shown in the first diagram of Fig. 2.
The forward limit amplitude is given by
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derivative operators representing corrections from (un-
known) UV physics, which will be taken care of in the
following discussion. As we will see, they turn out to be
irrelevant for our purpose except for the QED case.

Because the SM is a renormalizable theory, the SM am-
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i (⇤ ! 1) = 0. The same

relation does not need to apply to the GR sector, how-
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for ⇤ � me. Regarding MGR, we have the tree and one-
loop diagrams up to O(M�2

Pl ) as shown in Fig. 2. The
tree level (pole) contribution is cancelled with the high-
energy integral of RHS of (4). As a result, the one-loop
diagram is the leading gravitational contribution to the
bound (6). In the high-energy limit, we obtain
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Whereas B(2)
QED vanishes as ⇤ ! 1, B(2)

GR approaches
a negative constant in the limit ⇤ ! 1. This is why
we obtain a nontrivial cuto↵ scale from (approximate)
positivity bounds.

We remark that the result (11) can be used even in
the later analysis beyond QED. In general, the one-loop

contribution to B(2)
GR from charged particles should be

proportional to e2/M2
Pl and the dimensional analysis con-

cludes B(2)
GR / e2/(m2M2

Pl), where m is the mass of the
propagating particle in the loop. Therefore, the lightest
charged particle should provide the dominant contribu-

tion to B(2)
GR. We thus take into account the electron loop

only to compute B(2)
GR throughout this letter.

Now we discuss implications of the gravitational pos-
itivity bound (6). First, we can simply discard the
O(M�2

Pl M
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s ) uncertainty in (6) because the GR contri-

bution (11) is much larger than the uncertainty. Second,
as we mentioned earlier, there are potential higher deriva-
tive corrections that are originated from UV physics
above the cuto↵ scale ⇤. From the EFT perspective,

its contribution to B(2) can be estimated as B(2)
UV = ↵UV

⇤4 ,
where |↵UV| . 1 characterizes the size of interactions at
the scale ⇤.
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for ⇤ � me. Regarding MGR, we have the tree and one-
loop diagrams up to O(M�2

Pl ) as shown in Fig. 2. The
tree level (pole) contribution is cancelled with the high-
energy integral of RHS of (4). As a result, the one-loop
diagram is the leading gravitational contribution to the
bound (6). In the high-energy limit, we obtain
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45⇡m2
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2
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. (11)

Whereas B(2)
QED vanishes as ⇤ ! 1, B(2)

GR approaches
a negative constant in the limit ⇤ ! 1. This is why
we obtain a nontrivial cuto↵ scale from (approximate)
positivity bounds.

It is also convenient to remark that the result (11)
can be used even in the later analysis beyond QED. In

general, the one-loop contribution to B(2)
GR from charged

particles should be proportional to e2/M2
Pl and the di-

mensional analysis concludes B(2)
GR / e2/(m2M2

Pl), where
m is the mass of the propagating particle in the loop.
Therefore, the lightest charged particle should provide

the dominant contribution to B(2)
GR. We thus take into

account the electron loop only to compute B(2)
GR through-

out this letter.

Now we discuss implications of the gravitational pos-
itivity bound (6). First, we can simply discard the
O(M�2

Pl M
�2
s ) uncertainty in (6) because the GR contri-

bution (11) is much larger than the uncertainty. Second,
as we mentioned earlier, there are potential higher deriva-
tive corrections that are originated from UV physics
above the scale ⇤. From the EFT perspective, its contri-

bution to B(2) can be estimated as B(2)
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⇤4 , where
the dimensionless parameter ↵UV characterizes the size
of interactions at the scale ⇤ and satisfies |↵UV| . 1.
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If the first term is dominant, we have the same bound
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which is the one obtained in [18] from a slightly di↵erent
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derivative operators representing corrections from (un-
known) UV physics, which will be taken care of in the
following discussion. As we will see, they turn out to be
irrelevant for our purpose except for the QED case.

Because the SM is a renormalizable theory, the SM am-
plitude satisfies the twice-subtracted dispersion relation,
meaning that the relations
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have to hold for i = QED, Weak, and QCD. Here,
Ai(s) := Mi(s, t = 0) is the forward limit amplitude.

The relations (8) conclude B(2)
i (⇤ ! 1) = 0. The same

relation does not need to apply to the GR sector, how-
ever, because GR is not UV complete; as we will see,

B(2)
GR(⇤ ! 1) ! constant < 0. As ⇤ increases, the GR

contribution eventually dominates over the SM contribu-
tions, leading to violation of (6). The maximum cuto↵
scale of the SM coupled to GR is determined when the
inequality (6) is saturated.

Positivity in QED.— We begin with the light-by-light
scattering in QED coupled to GR which was discussed
recently in [25]. The leading QED contribution is the
one-loop diagram shown in the first diagram of Fig. 2.
The forward limit amplitude is given by
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for ⇤ � me. Regarding MGR, we have the tree and one-
loop diagrams up to O(M�2

Pl ) as shown in Fig. 2. The
tree level (pole) contribution is cancelled with the high-
energy integral of RHS of (4). As a result, the one-loop
diagram is the leading gravitational contribution to the
bound (6). In the high-energy limit, we obtain
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Whereas B(2)
QED vanishes as ⇤ ! 1, B(2)

GR approaches
a negative constant in the limit ⇤ ! 1. This is why
we obtain a nontrivial cuto↵ scale from (approximate)
positivity bounds.

We remark that the result (11) can be used even in
the later analysis beyond QED. In general, the one-loop

contribution to B(2)
GR from charged particles should be

proportional to e2/M2
Pl and the dimensional analysis con-

cludes B(2)
GR / e2/(m2M2

Pl), where m is the mass of the
propagating particle in the loop. Therefore, the lightest
charged particle should provide the dominant contribu-

tion to B(2)
GR. We thus take into account the electron loop

only to compute B(2)
GR throughout this letter.

Now we discuss implications of the gravitational pos-
itivity bound (6). First, we can simply discard the
O(M�2

Pl M
�2
s ) uncertainty in (6) because the GR contri-

bution (11) is much larger than the uncertainty. Second,
as we mentioned earlier, there are potential higher deriva-
tive corrections that are originated from UV physics
above the cuto↵ scale ⇤. From the EFT perspective,

its contribution to B(2) can be estimated as B(2)
UV = ↵UV

⇤4 ,
where |↵UV| . 1 characterizes the size of interactions at
the scale ⇤.
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term is dominant and ↵UV ⇠ 1, we find ⇤ .
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which is the one obtained in [18] from a slightly di↵erent
setup (see footnote 2). In either case, the typical size is
⇤ < ⇤QED ⇠ 108GeV which is regarded as the maximum
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derivative operators representing corrections from (un-
known) UV physics, which will be taken care of in the
following discussion. As we will see, they turn out to be
irrelevant for our purpose except for the QED case.

Because the SM is a renormalizable theory, the SM am-
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have to hold for i = QED, Weak, and QCD. Here,
Ai(s) := Mi(s, t = 0) is the forward limit amplitude.

The relations (8) conclude B(2)
i (⇤ ! 1) = 0. The same

relation does not need to apply to the GR sector, how-
ever, because GR is not UV complete; as we will see,

B(2)
GR(⇤ ! 1) ! constant < 0. As ⇤ increases, the GR

contribution eventually dominates over the SM contribu-
tions, leading to violation of (6). The maximum cuto↵
scale of the SM coupled to GR is determined when the
inequality (6) is saturated.

Positivity in QED.— We begin with the light-by-light
scattering in QED coupled to GR which was discussed
recently in [25]. The leading QED contribution is the
one-loop diagram shown in the first diagram of Fig. 2.
The forward limit amplitude is given by
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for ⇤ � me. Regarding MGR, we have the tree and one-
loop diagrams up to O(M�2

Pl ) as shown in Fig. 2. The
tree level (pole) contribution is cancelled with the high-
energy integral of RHS of (4). As a result, the one-loop
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Whereas B(2)
QED vanishes as ⇤ ! 1, B(2)

GR approaches
a negative constant in the limit ⇤ ! 1. This is why
we obtain a nontrivial cuto↵ scale from (approximate)
positivity bounds.

We remark that the result (11) can be used even in
the later analysis beyond QED. In general, the one-loop

contribution to B(2)
GR from charged particles should be

proportional to e2/M2
Pl and the dimensional analysis con-

cludes B(2)
GR / e2/(m2M2

Pl), where m is the mass of the
propagating particle in the loop. Therefore, the lightest
charged particle should provide the dominant contribu-

tion to B(2)
GR. We thus take into account the electron loop

only to compute B(2)
GR throughout this letter.

Now we discuss implications of the gravitational pos-
itivity bound (6). First, we can simply discard the
O(M�2

Pl M
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s ) uncertainty in (6) because the GR contri-

bution (11) is much larger than the uncertainty. Second,
as we mentioned earlier, there are potential higher deriva-
tive corrections that are originated from UV physics
above the cuto↵ scale ⇤. From the EFT perspective,

its contribution to B(2) can be estimated as B(2)
UV = ↵UV

⇤4 ,
where |↵UV| . 1 characterizes the size of interactions at
the scale ⇤.

All in all, the gravitational positivity implies the bound
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which is the one obtained in [18] from a slightly di↵erent
setup (see footnote 2). In either case, the typical size is
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computed accordingly. In general, EFT must contain
higher derivative operators representing corrections from
UV physics, which will be taken care of in the following
discussion. As we will see, they turn out to be irrelevant
for our purpose except for the QED case.
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have to hold for i = QED, Weak, and QCD. Here,
Ai(s) := Mi(s, t = 0) is the forward limit amplitude.

The relations (8) conclude B(2)
i (⇤ ! 1) = 0. The same

relation does not need to apply to the GR sector, how-
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scale, the GR contribution eventually dominates over the
SM contributions, leading to violation of (6). The maxi-
mum cuto↵ scale of the SM coupled to GR is determined
when the inequality (6) is saturated.

Positivity in QED.— We begin with the light-by-light
scattering in QED coupled to GR which was discussed
recently in [25]. The leading QED contribution is the
one-loop diagram shown in the first diagram of Fig. 2.
The forward limit amplitude is given by
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derivative operators representing corrections from (un-
known) UV physics, which will be taken care of in the
following discussion. As we will see, they turn out to be
irrelevant for our purpose except for the QED case.

Because the SM is a renormalizable theory, the SM am-
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have to hold for i = QED, Weak, and QCD. Here,
Ai(s) := Mi(s, t = 0) is the forward limit amplitude.

The relations (8) conclude B(2)
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relation does not need to apply to the GR sector, how-
ever, because GR is not UV complete; as we will see,

B(2)
GR(⇤ ! 1) ! constant < 0. As ⇤ increases, the GR

contribution eventually dominates over the SM contribu-
tions, leading to violation of (6). The maximum cuto↵
scale of the SM coupled to GR is determined when the
inequality (6) is saturated.

Positivity in QED.— We begin with the light-by-light
scattering in QED coupled to GR which was discussed
recently in [25]. The leading QED contribution is the
one-loop diagram shown in the first diagram of Fig. 2.
The forward limit amplitude is given by
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for ⇤ � me. Regarding MGR, we have the tree and one-
loop diagrams up to O(M�2

Pl ) as shown in Fig. 2. The
tree level (pole) contribution is cancelled with the high-
energy integral of RHS of (4). As a result, the one-loop
diagram is the leading gravitational contribution to the
bound (6). In the high-energy limit, we obtain
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Whereas B(2)
QED vanishes as ⇤ ! 1, B(2)

GR approaches
a negative constant in the limit ⇤ ! 1. This is why
we obtain a nontrivial cuto↵ scale from (approximate)
positivity bounds.

We remark that the result (11) can be used even in
the later analysis beyond QED. In general, the one-loop

contribution to B(2)
GR from charged particles should be

proportional to e2/M2
Pl and the dimensional analysis con-

cludes B(2)
GR / e2/(m2M2

Pl), where m is the mass of the
propagating particle in the loop. Therefore, the lightest
charged particle should provide the dominant contribu-

tion to B(2)
GR. We thus take into account the electron loop

only to compute B(2)
GR throughout this letter.

Now we discuss implications of the gravitational pos-
itivity bound (6). First, we can simply discard the
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s ) uncertainty in (6) because the GR contri-

bution (11) is much larger than the uncertainty. Second,
as we mentioned earlier, there are potential higher deriva-
tive corrections that are originated from UV physics
above the cuto↵ scale ⇤. From the EFT perspective,

its contribution to B(2) can be estimated as B(2)
UV = ↵UV

⇤4 ,
where |↵UV| . 1 characterizes the size of interactions at
the scale ⇤.

All in all, the gravitational positivity implies the bound
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Whereas B(2)
QED vanishes as ⇤ ! 1, B(2)

GR approaches
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we obtain a nontrivial cuto↵ scale from (approximate)
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GR through-
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derivative operators representing corrections from (un-
known) UV physics, which will be taken care of in the
following discussion. As we will see, they turn out to be
irrelevant for our purpose except for the QED case.

Because the SM is a renormalizable theory, the SM am-
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have to hold for i = QED, Weak, and QCD. Here,
Ai(s) := Mi(s, t = 0) is the forward limit amplitude.
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contribution eventually dominates over the SM contribu-
tions, leading to violation of (6). The maximum cuto↵
scale of the SM coupled to GR is determined when the
inequality (6) is saturated.

Positivity in QED.— We begin with the light-by-light
scattering in QED coupled to GR which was discussed
recently in [25]. The leading QED contribution is the
one-loop diagram shown in the first diagram of Fig. 2.
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Pl ) as shown in Fig. 2. The
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⇤4 ,
where |↵UV| . 1 characterizes the size of interactions at
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derivative operators representing corrections from (un-
known) UV physics, which will be taken care of in the
following discussion. As we will see, they turn out to be
irrelevant for our purpose except for the QED case.

Because the SM is a renormalizable theory, the SM am-
plitude satisfies the twice-subtracted dispersion relation,
meaning that the relations
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have to hold for i = QED, Weak, and QCD. Here,
Ai(s) := Mi(s, t = 0) is the forward limit amplitude.

The relations (8) conclude B(2)
i (⇤ ! 1) = 0. The same

relation does not need to apply to the GR sector, how-
ever, because GR is not UV complete; as we will see,

B(2)
GR(⇤ ! 1) ! constant < 0. As ⇤ increases, the GR

contribution eventually dominates over the SM contribu-
tions, leading to violation of (6). The maximum cuto↵
scale of the SM coupled to GR is determined when the
inequality (6) is saturated.

Positivity in QED.— We begin with the light-by-light
scattering in QED coupled to GR which was discussed
recently in [25]. The leading QED contribution is the
one-loop diagram shown in the first diagram of Fig. 2.
The forward limit amplitude is given by
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for ⇤ � me. Regarding MGR, we have the tree and one-
loop diagrams up to O(M�2

Pl ) as shown in Fig. 2. The
tree level (pole) contribution is cancelled with the high-
energy integral of RHS of (4). As a result, the one-loop
diagram is the leading gravitational contribution to the
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Whereas B(2)
QED vanishes as ⇤ ! 1, B(2)

GR approaches
a negative constant in the limit ⇤ ! 1. This is why
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positivity bounds.

We remark that the result (11) can be used even in
the later analysis beyond QED. In general, the one-loop
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proportional to e2/M2
Pl and the dimensional analysis con-

cludes B(2)
GR / e2/(m2M2

Pl), where m is the mass of the
propagating particle in the loop. Therefore, the lightest
charged particle should provide the dominant contribu-

tion to B(2)
GR. We thus take into account the electron loop

only to compute B(2)
GR throughout this letter.

Now we discuss implications of the gravitational pos-
itivity bound (6). First, we can simply discard the
O(M�2

Pl M
�2
s ) uncertainty in (6) because the GR contri-

bution (11) is much larger than the uncertainty. Second,
as we mentioned earlier, there are potential higher deriva-
tive corrections that are originated from UV physics
above the cuto↵ scale ⇤. From the EFT perspective,

its contribution to B(2) can be estimated as B(2)
UV = ↵UV

⇤4 ,
where |↵UV| . 1 characterizes the size of interactions at
the scale ⇤.
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computed accordingly. In general, EFT must contain
higher derivative operators representing corrections from
UV physics, which will be taken care of in the following
discussion. As we will see, they turn out to be irrelevant
for our purpose except for the QED case.

Because the SM is a renormalizable theory, the SM am-
plitude satisfies the twice-subtracted dispersion relation,
meaning that the relations
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have to hold for i = QED, Weak, and QCD. Here,
Ai(s) := Mi(s, t = 0) is the forward limit amplitude.

The relations (8) conclude B(2)
i (⇤ ! 1) = 0. The same

relation does not need to apply to the GR sector, how-
ever, because GR is not UV complete; as we will see,

B(2)
GR(⇤ ! 1) ! constant < 0. As ⇤ increases, i.e.,

as the SM coupled to GR is extrapolated to a high-energy
scale, the GR contribution eventually dominates over the
SM contributions, leading to violation of (6). The maxi-
mum cuto↵ scale of the SM coupled to GR is determined
when the inequality (6) is saturated.

Positivity in QED.— We begin with the light-by-light
scattering in QED coupled to GR which was discussed
recently in [25]. The leading QED contribution is the
one-loop diagram shown in the first diagram of Fig. 2.
The forward limit amplitude is given by
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derivative operators representing corrections from (un-
known) UV physics, which will be taken care of in the
following discussion. As we will see, they turn out to be
irrelevant for our purpose except for the QED case.

Because the SM is a renormalizable theory, the SM am-
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have to hold for i = QED, Weak, and QCD. Here,
Ai(s) := Mi(s, t = 0) is the forward limit amplitude.
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relation does not need to apply to the GR sector, how-
ever, because GR is not UV complete; as we will see,

B(2)
GR(⇤ ! 1) ! constant < 0. As ⇤ increases, the GR

contribution eventually dominates over the SM contribu-
tions, leading to violation of (6). The maximum cuto↵
scale of the SM coupled to GR is determined when the
inequality (6) is saturated.

Positivity in QED.— We begin with the light-by-light
scattering in QED coupled to GR which was discussed
recently in [25]. The leading QED contribution is the
one-loop diagram shown in the first diagram of Fig. 2.
The forward limit amplitude is given by
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for ⇤ � me. Regarding MGR, we have the tree and one-
loop diagrams up to O(M�2

Pl ) as shown in Fig. 2. The
tree level (pole) contribution is cancelled with the high-
energy integral of RHS of (4). As a result, the one-loop
diagram is the leading gravitational contribution to the
bound (6). In the high-energy limit, we obtain

B(2)
GR ⇡ �

22↵

45⇡m2
eM

2
Pl

. (11)

Whereas B(2)
QED vanishes as ⇤ ! 1, B(2)

GR approaches
a negative constant in the limit ⇤ ! 1. This is why
we obtain a nontrivial cuto↵ scale from (approximate)
positivity bounds.

We remark that the result (11) can be used even in
the later analysis beyond QED. In general, the one-loop

contribution to B(2)
GR from charged particles should be

proportional to e2/M2
Pl and the dimensional analysis con-

cludes B(2)
GR / e2/(m2M2

Pl), where m is the mass of the
propagating particle in the loop. Therefore, the lightest
charged particle should provide the dominant contribu-

tion to B(2)
GR. We thus take into account the electron loop

only to compute B(2)
GR throughout this letter.

Now we discuss implications of the gravitational pos-
itivity bound (6). First, we can simply discard the
O(M�2

Pl M
�2
s ) uncertainty in (6) because the GR contri-

bution (11) is much larger than the uncertainty. Second,
as we mentioned earlier, there are potential higher deriva-
tive corrections that are originated from UV physics
above the cuto↵ scale ⇤. From the EFT perspective,

its contribution to B(2) can be estimated as B(2)
UV = ↵UV

⇤4 ,
where |↵UV| . 1 characterizes the size of interactions at
the scale ⇤.

All in all, the gravitational positivity implies the bound
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Whereas B(2)
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as we mentioned earlier, there are potential higher deriva-
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derivative operators representing corrections from (un-
known) UV physics, which will be taken care of in the
following discussion. As we will see, they turn out to be
irrelevant for our purpose except for the QED case.

Because the SM is a renormalizable theory, the SM am-
plitude satisfies the twice-subtracted dispersion relation,
meaning that the relations
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have to hold for i = QED, Weak, and QCD. Here,
Ai(s) := Mi(s, t = 0) is the forward limit amplitude.

The relations (8) conclude B(2)
i (⇤ ! 1) = 0. The same

relation does not need to apply to the GR sector, how-
ever, because GR is not UV complete; as we will see,

B(2)
GR(⇤ ! 1) ! constant < 0. As ⇤ increases, the GR

contribution eventually dominates over the SM contribu-
tions, leading to violation of (6). The maximum cuto↵
scale of the SM coupled to GR is determined when the
inequality (6) is saturated.

Positivity in QED.— We begin with the light-by-light
scattering in QED coupled to GR which was discussed
recently in [25]. The leading QED contribution is the
one-loop diagram shown in the first diagram of Fig. 2.
The forward limit amplitude is given by
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B(2)
QED ⇡

64↵2

⇤4

✓
ln

⇤

me
�

1

4

◆
(10)

�

� �

�

P,R

Vi = ⇢,!,�

FIG. 4. Feynman diagrams relevant for MQCD.

for ⇤ � me. Regarding MGR, we have the tree and one-
loop diagrams up to O(M�2

Pl ) as shown in Fig. 2. The
tree level (pole) contribution is cancelled with the high-
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GR approaches
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we obtain a nontrivial cuto↵ scale from (approximate)
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We remark that the result (11) can be used even in
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contribution to B(2)
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cludes B(2)
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Pl), where m is the mass of the
propagating particle in the loop. Therefore, the lightest
charged particle should provide the dominant contribu-

tion to B(2)
GR. We thus take into account the electron loop

only to compute B(2)
GR throughout this letter.

Now we discuss implications of the gravitational pos-
itivity bound (6). First, we can simply discard the
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s ) uncertainty in (6) because the GR contri-
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above the cuto↵ scale ⇤. From the EFT perspective,

its contribution to B(2) can be estimated as B(2)
UV = ↵UV

⇤4 ,
where |↵UV| . 1 characterizes the size of interactions at
the scale ⇤.

All in all, the gravitational positivity implies the bound

B(2)
QED +B(2)

UV +B(2)
GR > 0, yielding

64↵2

⇤4

✓
ln

⇤

me
�

1

4

◆
+

↵UV

⇤4
>

22↵

45⇡m2
eM

2
Pl

. (12)

If the first term is dominant, we have the same bound
as [25], ⇤ .

p
emeMPl. On the other hand, if the second

term is dominant and ↵UV ⇠ 1, we find ⇤ .
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derivative operators representing corrections from (un-
known) UV physics, which will be taken care of in the
following discussion. As we will see, they turn out to be
irrelevant for our purpose except for the QED case.

Because the SM is a renormalizable theory, the SM am-
plitude satisfies the twice-subtracted dispersion relation,
meaning that the relations
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have to hold for i = QED, Weak, and QCD. Here,
Ai(s) := Mi(s, t = 0) is the forward limit amplitude.

The relations (8) conclude B(2)
i (⇤ ! 1) = 0. The same

relation does not need to apply to the GR sector, how-
ever, because GR is not UV complete; as we will see,

B(2)
GR(⇤ ! 1) ! constant < 0. As ⇤ increases, the GR

contribution eventually dominates over the SM contribu-
tions, leading to violation of (6). The maximum cuto↵
scale of the SM coupled to GR is determined when the
inequality (6) is saturated.

Positivity in QED.— We begin with the light-by-light
scattering in QED coupled to GR which was discussed
recently in [25]. The leading QED contribution is the
one-loop diagram shown in the first diagram of Fig. 2.
The forward limit amplitude is given by
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for ⇤ � me. Regarding MGR, we have the tree and one-
loop diagrams up to O(M�2

Pl ) as shown in Fig. 2. The
tree level (pole) contribution is cancelled with the high-
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we obtain a nontrivial cuto↵ scale from (approximate)
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We remark that the result (11) can be used even in
the later analysis beyond QED. In general, the one-loop

contribution to B(2)
GR from charged particles should be

proportional to e2/M2
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Pl), where m is the mass of the
propagating particle in the loop. Therefore, the lightest
charged particle should provide the dominant contribu-

tion to B(2)
GR. We thus take into account the electron loop

only to compute B(2)
GR throughout this letter.

Now we discuss implications of the gravitational pos-
itivity bound (6). First, we can simply discard the
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as we mentioned earlier, there are potential higher deriva-
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computed accordingly. In general, EFT must contain
higher derivative operators representing corrections from
UV physics, which will be taken care of in the following
discussion. As we will see, they turn out to be irrelevant
for our purpose except for the QED case.

Because the SM is a renormalizable theory, the SM am-
plitude satisfies the twice-subtracted dispersion relation,
meaning that the relations
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have to hold for i = QED, Weak, and QCD. Here,
Ai(s) := Mi(s, t = 0) is the forward limit amplitude.

The relations (8) conclude B(2)
i (⇤ ! 1) = 0. The same

relation does not need to apply to the GR sector, how-
ever, because GR is not UV complete; as we will see,

B(2)
GR(⇤ ! 1) ! constant < 0. As ⇤ increases, i.e.,

as the SM coupled to GR is extrapolated to a high-energy
scale, the GR contribution eventually dominates over the
SM contributions, leading to violation of (6). The maxi-
mum cuto↵ scale of the SM coupled to GR is determined
when the inequality (6) is saturated.

Positivity in QED.— We begin with the light-by-light
scattering in QED coupled to GR which was discussed
recently in [25]. The leading QED contribution is the
one-loop diagram shown in the first diagram of Fig. 2.
The forward limit amplitude is given by
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derivative operators representing corrections from (un-
known) UV physics, which will be taken care of in the
following discussion. As we will see, they turn out to be
irrelevant for our purpose except for the QED case.

Because the SM is a renormalizable theory, the SM am-
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contribution eventually dominates over the SM contribu-
tions, leading to violation of (6). The maximum cuto↵
scale of the SM coupled to GR is determined when the
inequality (6) is saturated.

Positivity in QED.— We begin with the light-by-light
scattering in QED coupled to GR which was discussed
recently in [25]. The leading QED contribution is the
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for ⇤ � me. Regarding MGR, we have the tree and one-
loop diagrams up to O(M�2

Pl ) as shown in Fig. 2. The
tree level (pole) contribution is cancelled with the high-
energy integral of RHS of (4). As a result, the one-loop
diagram is the leading gravitational contribution to the
bound (6). In the high-energy limit, we obtain
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Whereas B(2)
QED vanishes as ⇤ ! 1, B(2)

GR approaches
a negative constant in the limit ⇤ ! 1. This is why
we obtain a nontrivial cuto↵ scale from (approximate)
positivity bounds.

We remark that the result (11) can be used even in
the later analysis beyond QED. In general, the one-loop

contribution to B(2)
GR from charged particles should be

proportional to e2/M2
Pl and the dimensional analysis con-

cludes B(2)
GR / e2/(m2M2

Pl), where m is the mass of the
propagating particle in the loop. Therefore, the lightest
charged particle should provide the dominant contribu-

tion to B(2)
GR. We thus take into account the electron loop

only to compute B(2)
GR throughout this letter.

Now we discuss implications of the gravitational pos-
itivity bound (6). First, we can simply discard the
O(M�2

Pl M
�2
s ) uncertainty in (6) because the GR contri-

bution (11) is much larger than the uncertainty. Second,
as we mentioned earlier, there are potential higher deriva-
tive corrections that are originated from UV physics
above the cuto↵ scale ⇤. From the EFT perspective,

its contribution to B(2) can be estimated as B(2)
UV = ↵UV

⇤4 ,
where |↵UV| . 1 characterizes the size of interactions at
the scale ⇤.

All in all, the gravitational positivity implies the bound
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derivative operators representing corrections from (un-
known) UV physics, which will be taken care of in the
following discussion. As we will see, they turn out to be
irrelevant for our purpose except for the QED case.
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have to hold for i = QED, Weak, and QCD. Here,
Ai(s) := Mi(s, t = 0) is the forward limit amplitude.

The relations (8) conclude B(2)
i (⇤ ! 1) = 0. The same

relation does not need to apply to the GR sector, how-
ever, because GR is not UV complete; as we will see,

B(2)
GR(⇤ ! 1) ! constant < 0. As ⇤ increases, the GR

contribution eventually dominates over the SM contribu-
tions, leading to violation of (6). The maximum cuto↵
scale of the SM coupled to GR is determined when the
inequality (6) is saturated.

Positivity in QED.— We begin with the light-by-light
scattering in QED coupled to GR which was discussed
recently in [25]. The leading QED contribution is the
one-loop diagram shown in the first diagram of Fig. 2.
The forward limit amplitude is given by
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derivative operators representing corrections from (un-
known) UV physics, which will be taken care of in the
following discussion. As we will see, they turn out to be
irrelevant for our purpose except for the QED case.

Because the SM is a renormalizable theory, the SM am-
plitude satisfies the twice-subtracted dispersion relation,
meaning that the relations
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have to hold for i = QED, Weak, and QCD. Here,
Ai(s) := Mi(s, t = 0) is the forward limit amplitude.

The relations (8) conclude B(2)
i (⇤ ! 1) = 0. The same

relation does not need to apply to the GR sector, how-
ever, because GR is not UV complete; as we will see,

B(2)
GR(⇤ ! 1) ! constant < 0. As ⇤ increases, the GR

contribution eventually dominates over the SM contribu-
tions, leading to violation of (6). The maximum cuto↵
scale of the SM coupled to GR is determined when the
inequality (6) is saturated.

Positivity in QED.— We begin with the light-by-light
scattering in QED coupled to GR which was discussed
recently in [25]. The leading QED contribution is the
one-loop diagram shown in the first diagram of Fig. 2.
The forward limit amplitude is given by
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for ⇤ � me. Regarding MGR, we have the tree and one-
loop diagrams up to O(M�2

Pl ) as shown in Fig. 2. The
tree level (pole) contribution is cancelled with the high-
energy integral of RHS of (4). As a result, the one-loop
diagram is the leading gravitational contribution to the
bound (6). In the high-energy limit, we obtain
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Whereas B(2)
QED vanishes as ⇤ ! 1, B(2)

GR approaches
a negative constant in the limit ⇤ ! 1. This is why
we obtain a nontrivial cuto↵ scale from (approximate)
positivity bounds.

We remark that the result (11) can be used even in
the later analysis beyond QED. In general, the one-loop

contribution to B(2)
GR from charged particles should be

proportional to e2/M2
Pl and the dimensional analysis con-

cludes B(2)
GR / e2/(m2M2

Pl), where m is the mass of the
propagating particle in the loop. Therefore, the lightest
charged particle should provide the dominant contribu-

tion to B(2)
GR. We thus take into account the electron loop

only to compute B(2)
GR throughout this letter.

Now we discuss implications of the gravitational pos-
itivity bound (6). First, we can simply discard the
O(M�2

Pl M
�2
s ) uncertainty in (6) because the GR contri-

bution (11) is much larger than the uncertainty. Second,
as we mentioned earlier, there are potential higher deriva-
tive corrections that are originated from UV physics
above the cuto↵ scale ⇤. From the EFT perspective,

its contribution to B(2) can be estimated as B(2)
UV = ↵UV

⇤4 ,
where |↵UV| . 1 characterizes the size of interactions at
the scale ⇤.

All in all, the gravitational positivity implies the bound
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computed accordingly. In general, EFT must contain
higher derivative operators representing corrections from
UV physics, which will be taken care of in the following
discussion. As we will see, they turn out to be irrelevant
for our purpose except for the QED case.
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have to hold for i = QED, Weak, and QCD. Here,
Ai(s) := Mi(s, t = 0) is the forward limit amplitude.

The relations (8) conclude B(2)
i (⇤ ! 1) = 0. The same

relation does not need to apply to the GR sector, how-
ever, because GR is not UV complete; as we will see,

B(2)
GR(⇤ ! 1) ! constant < 0. As ⇤ increases, i.e.,

as the SM coupled to GR is extrapolated to a high-energy
scale, the GR contribution eventually dominates over the
SM contributions, leading to violation of (6). The maxi-
mum cuto↵ scale of the SM coupled to GR is determined
when the inequality (6) is saturated.

Positivity in QED.— We begin with the light-by-light
scattering in QED coupled to GR which was discussed
recently in [25]. The leading QED contribution is the
one-loop diagram shown in the first diagram of Fig. 2.
The forward limit amplitude is given by
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derivative operators representing corrections from (un-
known) UV physics, which will be taken care of in the
following discussion. As we will see, they turn out to be
irrelevant for our purpose except for the QED case.
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contribution eventually dominates over the SM contribu-
tions, leading to violation of (6). The maximum cuto↵
scale of the SM coupled to GR is determined when the
inequality (6) is saturated.
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account the electron loop only to compute B(2)
GR through-

out this letter.

Now we discuss implications of the gravitational pos-
itivity bound (6). First, we can simply discard the
O(M�2

Pl M
�2
s ) uncertainty in (6) because the GR contri-

bution (11) is much larger than the uncertainty. Second,
as we mentioned earlier, there are potential higher deriva-
tive corrections that are originated from UV physics
above the scale ⇤. From the EFT perspective, its contri-

bution to B(2) can be estimated as B(2)
UV = ↵UV

⇤4 , where
the dimensionless parameter ↵UV characterizes the size
of interactions at the scale ⇤ and satisfies |↵UV| . 1.

All in all, the gravitational positivity implies the bound
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derivative operators representing corrections from (un-
known) UV physics, which will be taken care of in the
following discussion. As we will see, they turn out to be
irrelevant for our purpose except for the QED case.

Because the SM is a renormalizable theory, the SM am-
plitude satisfies the twice-subtracted dispersion relation,
meaning that the relations
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have to hold for i = QED, Weak, and QCD. Here,
Ai(s) := Mi(s, t = 0) is the forward limit amplitude.

The relations (8) conclude B(2)
i (⇤ ! 1) = 0. The same

relation does not need to apply to the GR sector, how-
ever, because GR is not UV complete; as we will see,

B(2)
GR(⇤ ! 1) ! constant < 0. As ⇤ increases, the GR

contribution eventually dominates over the SM contribu-
tions, leading to violation of (6). The maximum cuto↵
scale of the SM coupled to GR is determined when the
inequality (6) is saturated.

Positivity in QED.— We begin with the light-by-light
scattering in QED coupled to GR which was discussed
recently in [25]. The leading QED contribution is the
one-loop diagram shown in the first diagram of Fig. 2.
The forward limit amplitude is given by
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for ⇤ � me. Regarding MGR, we have the tree and one-
loop diagrams up to O(M�2

Pl ) as shown in Fig. 2. The
tree level (pole) contribution is cancelled with the high-
energy integral of RHS of (4). As a result, the one-loop
diagram is the leading gravitational contribution to the
bound (6). In the high-energy limit, we obtain
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Whereas B(2)
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We remark that the result (11) can be used even in
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Pl and the dimensional analysis con-

cludes B(2)
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Pl), where m is the mass of the
propagating particle in the loop. Therefore, the lightest
charged particle should provide the dominant contribu-

tion to B(2)
GR. We thus take into account the electron loop

only to compute B(2)
GR throughout this letter.

Now we discuss implications of the gravitational pos-
itivity bound (6). First, we can simply discard the
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s ) uncertainty in (6) because the GR contri-

bution (11) is much larger than the uncertainty. Second,
as we mentioned earlier, there are potential higher deriva-
tive corrections that are originated from UV physics
above the cuto↵ scale ⇤. From the EFT perspective,

its contribution to B(2) can be estimated as B(2)
UV = ↵UV

⇤4 ,
where |↵UV| . 1 characterizes the size of interactions at
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derivative operators representing corrections from (un-
known) UV physics, which will be taken care of in the
following discussion. As we will see, they turn out to be
irrelevant for our purpose except for the QED case.

Because the SM is a renormalizable theory, the SM am-
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have to hold for i = QED, Weak, and QCD. Here,
Ai(s) := Mi(s, t = 0) is the forward limit amplitude.

The relations (8) conclude B(2)
i (⇤ ! 1) = 0. The same

relation does not need to apply to the GR sector, how-
ever, because GR is not UV complete; as we will see,

B(2)
GR(⇤ ! 1) ! constant < 0. As ⇤ increases, the GR

contribution eventually dominates over the SM contribu-
tions, leading to violation of (6). The maximum cuto↵
scale of the SM coupled to GR is determined when the
inequality (6) is saturated.

Positivity in QED.— We begin with the light-by-light
scattering in QED coupled to GR which was discussed
recently in [25]. The leading QED contribution is the
one-loop diagram shown in the first diagram of Fig. 2.
The forward limit amplitude is given by
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Pl), where m is the mass of the
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above the cuto↵ scale ⇤. From the EFT perspective,

its contribution to B(2) can be estimated as B(2)
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⇤4 ,
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computed accordingly. In general, EFT must contain
higher derivative operators representing corrections from
UV physics, which will be taken care of in the following
discussion. As we will see, they turn out to be irrelevant
for our purpose except for the QED case.

Because the SM is a renormalizable theory, the SM am-
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have to hold for i = QED, Weak, and QCD. Here,
Ai(s) := Mi(s, t = 0) is the forward limit amplitude.

The relations (8) conclude B(2)
i (⇤ ! 1) = 0. The same

relation does not need to apply to the GR sector, how-
ever, because GR is not UV complete; as we will see,
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scale, the GR contribution eventually dominates over the
SM contributions, leading to violation of (6). The maxi-
mum cuto↵ scale of the SM coupled to GR is determined
when the inequality (6) is saturated.

Positivity in QED.— We begin with the light-by-light
scattering in QED coupled to GR which was discussed
recently in [25]. The leading QED contribution is the
one-loop diagram shown in the first diagram of Fig. 2.
The forward limit amplitude is given by
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derivative operators representing corrections from (un-
known) UV physics, which will be taken care of in the
following discussion. As we will see, they turn out to be
irrelevant for our purpose except for the QED case.

Because the SM is a renormalizable theory, the SM am-
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have to hold for i = QED, Weak, and QCD. Here,
Ai(s) := Mi(s, t = 0) is the forward limit amplitude.

The relations (8) conclude B(2)
i (⇤ ! 1) = 0. The same

relation does not need to apply to the GR sector, how-
ever, because GR is not UV complete; as we will see,

B(2)
GR(⇤ ! 1) ! constant < 0. As ⇤ increases, the GR

contribution eventually dominates over the SM contribu-
tions, leading to violation of (6). The maximum cuto↵
scale of the SM coupled to GR is determined when the
inequality (6) is saturated.

Positivity in QED.— We begin with the light-by-light
scattering in QED coupled to GR which was discussed
recently in [25]. The leading QED contribution is the
one-loop diagram shown in the first diagram of Fig. 2.
The forward limit amplitude is given by
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for ⇤ � me. Regarding MGR, we have the tree and one-
loop diagrams up to O(M�2

Pl ) as shown in Fig. 2. The
tree level (pole) contribution is cancelled with the high-
energy integral of RHS of (4). As a result, the one-loop
diagram is the leading gravitational contribution to the
bound (6). In the high-energy limit, we obtain
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Whereas B(2)
QED vanishes as ⇤ ! 1, B(2)

GR approaches
a negative constant in the limit ⇤ ! 1. This is why
we obtain a nontrivial cuto↵ scale from (approximate)
positivity bounds.

We remark that the result (11) can be used even in
the later analysis beyond QED. In general, the one-loop

contribution to B(2)
GR from charged particles should be

proportional to e2/M2
Pl and the dimensional analysis con-

cludes B(2)
GR / e2/(m2M2

Pl), where m is the mass of the
propagating particle in the loop. Therefore, the lightest
charged particle should provide the dominant contribu-

tion to B(2)
GR. We thus take into account the electron loop

only to compute B(2)
GR throughout this letter.

Now we discuss implications of the gravitational pos-
itivity bound (6). First, we can simply discard the
O(M�2

Pl M
�2
s ) uncertainty in (6) because the GR contri-

bution (11) is much larger than the uncertainty. Second,
as we mentioned earlier, there are potential higher deriva-
tive corrections that are originated from UV physics
above the cuto↵ scale ⇤. From the EFT perspective,

its contribution to B(2) can be estimated as B(2)
UV = ↵UV

⇤4 ,
where |↵UV| . 1 characterizes the size of interactions at
the scale ⇤.

All in all, the gravitational positivity implies the bound
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emeMPl. On the other hand, if the second

term is dominant and ↵UV ⇠ 1, we find ⇤ .
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which is the one obtained in [18] from a slightly di↵erent
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GR approaches
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derivative operators representing corrections from (un-
known) UV physics, which will be taken care of in the
following discussion. As we will see, they turn out to be
irrelevant for our purpose except for the QED case.

Because the SM is a renormalizable theory, the SM am-
plitude satisfies the twice-subtracted dispersion relation,
meaning that the relations
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have to hold for i = QED, Weak, and QCD. Here,
Ai(s) := Mi(s, t = 0) is the forward limit amplitude.

The relations (8) conclude B(2)
i (⇤ ! 1) = 0. The same

relation does not need to apply to the GR sector, how-
ever, because GR is not UV complete; as we will see,

B(2)
GR(⇤ ! 1) ! constant < 0. As ⇤ increases, the GR

contribution eventually dominates over the SM contribu-
tions, leading to violation of (6). The maximum cuto↵
scale of the SM coupled to GR is determined when the
inequality (6) is saturated.

Positivity in QED.— We begin with the light-by-light
scattering in QED coupled to GR which was discussed
recently in [25]. The leading QED contribution is the
one-loop diagram shown in the first diagram of Fig. 2.
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derivative operators representing corrections from (un-
known) UV physics, which will be taken care of in the
following discussion. As we will see, they turn out to be
irrelevant for our purpose except for the QED case.

Because the SM is a renormalizable theory, the SM am-
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have to hold for i = QED, Weak, and QCD. Here,
Ai(s) := Mi(s, t = 0) is the forward limit amplitude.

The relations (8) conclude B(2)
i (⇤ ! 1) = 0. The same

relation does not need to apply to the GR sector, how-
ever, because GR is not UV complete; as we will see,

B(2)
GR(⇤ ! 1) ! constant < 0. As ⇤ increases, the GR

contribution eventually dominates over the SM contribu-
tions, leading to violation of (6). The maximum cuto↵
scale of the SM coupled to GR is determined when the
inequality (6) is saturated.

Positivity in QED.— We begin with the light-by-light
scattering in QED coupled to GR which was discussed
recently in [25]. The leading QED contribution is the
one-loop diagram shown in the first diagram of Fig. 2.
The forward limit amplitude is given by
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for ⇤ � me. Regarding MGR, we have the tree and one-
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Pl ) as shown in Fig. 2. The
tree level (pole) contribution is cancelled with the high-
energy integral of RHS of (4). As a result, the one-loop
diagram is the leading gravitational contribution to the
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Whereas B(2)
QED vanishes as ⇤ ! 1, B(2)

GR approaches
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We remark that the result (11) can be used even in
the later analysis beyond QED. In general, the one-loop
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proportional to e2/M2
Pl and the dimensional analysis con-

cludes B(2)
GR / e2/(m2M2

Pl), where m is the mass of the
propagating particle in the loop. Therefore, the lightest
charged particle should provide the dominant contribu-

tion to B(2)
GR. We thus take into account the electron loop

only to compute B(2)
GR throughout this letter.

Now we discuss implications of the gravitational pos-
itivity bound (6). First, we can simply discard the
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s ) uncertainty in (6) because the GR contri-

bution (11) is much larger than the uncertainty. Second,
as we mentioned earlier, there are potential higher deriva-
tive corrections that are originated from UV physics
above the cuto↵ scale ⇤. From the EFT perspective,

its contribution to B(2) can be estimated as B(2)
UV = ↵UV

⇤4 ,
where |↵UV| . 1 characterizes the size of interactions at
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computed accordingly. In general, EFT must contain
higher derivative operators representing corrections from
UV physics, which will be taken care of in the following
discussion. As we will see, they turn out to be irrelevant
for our purpose except for the QED case.
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have to hold for i = QED, Weak, and QCD. Here,
Ai(s) := Mi(s, t = 0) is the forward limit amplitude.

The relations (8) conclude B(2)
i (⇤ ! 1) = 0. The same

relation does not need to apply to the GR sector, how-
ever, because GR is not UV complete; as we will see,

B(2)
GR(⇤ ! 1) ! constant < 0. As ⇤ increases, i.e.,

as the SM coupled to GR is extrapolated to a high-energy
scale, the GR contribution eventually dominates over the
SM contributions, leading to violation of (6). The maxi-
mum cuto↵ scale of the SM coupled to GR is determined
when the inequality (6) is saturated.

Positivity in QED.— We begin with the light-by-light
scattering in QED coupled to GR which was discussed
recently in [25]. The leading QED contribution is the
one-loop diagram shown in the first diagram of Fig. 2.
The forward limit amplitude is given by
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derivative operators representing corrections from (un-
known) UV physics, which will be taken care of in the
following discussion. As we will see, they turn out to be
irrelevant for our purpose except for the QED case.
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tions, leading to violation of (6). The maximum cuto↵
scale of the SM coupled to GR is determined when the
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for ⇤ � me. Regarding MGR, we have the tree and one-
loop diagrams up to O(M�2

Pl ) as shown in Fig. 2. The
tree level (pole) contribution is cancelled with the high-
energy integral of RHS of (4). As a result, the one-loop
diagram is the leading gravitational contribution to the
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Whereas B(2)
QED vanishes as ⇤ ! 1, B(2)

GR approaches
a negative constant in the limit ⇤ ! 1. This is why
we obtain a nontrivial cuto↵ scale from (approximate)
positivity bounds.

We remark that the result (11) can be used even in
the later analysis beyond QED. In general, the one-loop

contribution to B(2)
GR from charged particles should be

proportional to e2/M2
Pl and the dimensional analysis con-

cludes B(2)
GR / e2/(m2M2

Pl), where m is the mass of the
propagating particle in the loop. Therefore, the lightest
charged particle should provide the dominant contribu-

tion to B(2)
GR. We thus take into account the electron loop

only to compute B(2)
GR throughout this letter.

Now we discuss implications of the gravitational pos-
itivity bound (6). First, we can simply discard the
O(M�2
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s ) uncertainty in (6) because the GR contri-

bution (11) is much larger than the uncertainty. Second,
as we mentioned earlier, there are potential higher deriva-
tive corrections that are originated from UV physics
above the cuto↵ scale ⇤. From the EFT perspective,

its contribution to B(2) can be estimated as B(2)
UV = ↵UV

⇤4 ,
where |↵UV| . 1 characterizes the size of interactions at
the scale ⇤.

All in all, the gravitational positivity implies the bound
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derivative operators representing corrections from (un-
known) UV physics, which will be taken care of in the
following discussion. As we will see, they turn out to be
irrelevant for our purpose except for the QED case.

Because the SM is a renormalizable theory, the SM am-
plitude satisfies the twice-subtracted dispersion relation,
meaning that the relations
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have to hold for i = QED, Weak, and QCD. Here,
Ai(s) := Mi(s, t = 0) is the forward limit amplitude.

The relations (8) conclude B(2)
i (⇤ ! 1) = 0. The same

relation does not need to apply to the GR sector, how-
ever, because GR is not UV complete; as we will see,

B(2)
GR(⇤ ! 1) ! constant < 0. As ⇤ increases, the GR

contribution eventually dominates over the SM contribu-
tions, leading to violation of (6). The maximum cuto↵
scale of the SM coupled to GR is determined when the
inequality (6) is saturated.

Positivity in QED.— We begin with the light-by-light
scattering in QED coupled to GR which was discussed
recently in [25]. The leading QED contribution is the
one-loop diagram shown in the first diagram of Fig. 2.
The forward limit amplitude is given by
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Pl ) as shown in Fig. 2. The
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GR approaches
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GR / e2/(m2M2

Pl), where m is the mass of the
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only to compute B(2)
GR throughout this letter.
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above the cuto↵ scale ⇤. From the EFT perspective,

its contribution to B(2) can be estimated as B(2)
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⇤4 ,
where |↵UV| . 1 characterizes the size of interactions at
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derivative operators representing corrections from (un-
known) UV physics, which will be taken care of in the
following discussion. As we will see, they turn out to be
irrelevant for our purpose except for the QED case.

Because the SM is a renormalizable theory, the SM am-
plitude satisfies the twice-subtracted dispersion relation,
meaning that the relations
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have to hold for i = QED, Weak, and QCD. Here,
Ai(s) := Mi(s, t = 0) is the forward limit amplitude.

The relations (8) conclude B(2)
i (⇤ ! 1) = 0. The same

relation does not need to apply to the GR sector, how-
ever, because GR is not UV complete; as we will see,

B(2)
GR(⇤ ! 1) ! constant < 0. As ⇤ increases, the GR

contribution eventually dominates over the SM contribu-
tions, leading to violation of (6). The maximum cuto↵
scale of the SM coupled to GR is determined when the
inequality (6) is saturated.

Positivity in QED.— We begin with the light-by-light
scattering in QED coupled to GR which was discussed
recently in [25]. The leading QED contribution is the
one-loop diagram shown in the first diagram of Fig. 2.
The forward limit amplitude is given by
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Pl ) as shown in Fig. 2. The
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computed accordingly. In general, EFT must contain
higher derivative operators representing corrections from
UV physics, which will be taken care of in the following
discussion. As we will see, they turn out to be irrelevant
for our purpose except for the QED case.

Because the SM is a renormalizable theory, the SM am-
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have to hold for i = QED, Weak, and QCD. Here,
Ai(s) := Mi(s, t = 0) is the forward limit amplitude.

The relations (8) conclude B(2)
i (⇤ ! 1) = 0. The same

relation does not need to apply to the GR sector, how-
ever, because GR is not UV complete; as we will see,

B(2)
GR(⇤ ! 1) ! constant < 0. As ⇤ increases, i.e.,

as the SM coupled to GR is extrapolated to a high-energy
scale, the GR contribution eventually dominates over the
SM contributions, leading to violation of (6). The maxi-
mum cuto↵ scale of the SM coupled to GR is determined
when the inequality (6) is saturated.

Positivity in QED.— We begin with the light-by-light
scattering in QED coupled to GR which was discussed
recently in [25]. The leading QED contribution is the
one-loop diagram shown in the first diagram of Fig. 2.
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derivative operators representing corrections from (un-
known) UV physics, which will be taken care of in the
following discussion. As we will see, they turn out to be
irrelevant for our purpose except for the QED case.
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contribution eventually dominates over the SM contribu-
tions, leading to violation of (6). The maximum cuto↵
scale of the SM coupled to GR is determined when the
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Positivity in QED.— We begin with the light-by-light
scattering in QED coupled to GR which was discussed
recently in [25]. The leading QED contribution is the
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for ⇤ � me. Regarding MGR, we have the tree and one-
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Pl ) as shown in Fig. 2. The
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Whereas B(2)
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We remark that the result (11) can be used even in
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cludes B(2)
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Pl), where m is the mass of the
propagating particle in the loop. Therefore, the lightest
charged particle should provide the dominant contribu-

tion to B(2)
GR. We thus take into account the electron loop

only to compute B(2)
GR throughout this letter.

Now we discuss implications of the gravitational pos-
itivity bound (6). First, we can simply discard the
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s ) uncertainty in (6) because the GR contri-

bution (11) is much larger than the uncertainty. Second,
as we mentioned earlier, there are potential higher deriva-
tive corrections that are originated from UV physics
above the cuto↵ scale ⇤. From the EFT perspective,

its contribution to B(2) can be estimated as B(2)
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⇤4 ,
where |↵UV| . 1 characterizes the size of interactions at
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known) UV physics, which will be taken care of in the
following discussion. As we will see, they turn out to be
irrelevant for our purpose except for the QED case.

Because the SM is a renormalizable theory, the SM am-
plitude satisfies the twice-subtracted dispersion relation,
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have to hold for i = QED, Weak, and QCD. Here,
Ai(s) := Mi(s, t = 0) is the forward limit amplitude.

The relations (8) conclude B(2)
i (⇤ ! 1) = 0. The same

relation does not need to apply to the GR sector, how-
ever, because GR is not UV complete; as we will see,
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GR(⇤ ! 1) ! constant < 0. As ⇤ increases, the GR

contribution eventually dominates over the SM contribu-
tions, leading to violation of (6). The maximum cuto↵
scale of the SM coupled to GR is determined when the
inequality (6) is saturated.

Positivity in QED.— We begin with the light-by-light
scattering in QED coupled to GR which was discussed
recently in [25]. The leading QED contribution is the
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derivative operators representing corrections from (un-
known) UV physics, which will be taken care of in the
following discussion. As we will see, they turn out to be
irrelevant for our purpose except for the QED case.

Because the SM is a renormalizable theory, the SM am-
plitude satisfies the twice-subtracted dispersion relation,
meaning that the relations
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have to hold for i = QED, Weak, and QCD. Here,
Ai(s) := Mi(s, t = 0) is the forward limit amplitude.

The relations (8) conclude B(2)
i (⇤ ! 1) = 0. The same

relation does not need to apply to the GR sector, how-
ever, because GR is not UV complete; as we will see,

B(2)
GR(⇤ ! 1) ! constant < 0. As ⇤ increases, the GR

contribution eventually dominates over the SM contribu-
tions, leading to violation of (6). The maximum cuto↵
scale of the SM coupled to GR is determined when the
inequality (6) is saturated.

Positivity in QED.— We begin with the light-by-light
scattering in QED coupled to GR which was discussed
recently in [25]. The leading QED contribution is the
one-loop diagram shown in the first diagram of Fig. 2.
The forward limit amplitude is given by
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Pl ) as shown in Fig. 2. The
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GR approaches
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We remark that the result (11) can be used even in
the later analysis beyond QED. In general, the one-loop
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cludes B(2)
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Pl), where m is the mass of the
propagating particle in the loop. Therefore, the lightest
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tion to B(2)
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GR throughout this letter.
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as we mentioned earlier, there are potential higher deriva-
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above the cuto↵ scale ⇤. From the EFT perspective,
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⇤4 ,
where |↵UV| . 1 characterizes the size of interactions at
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computed accordingly. In general, EFT must contain
higher derivative operators representing corrections from
UV physics, which will be taken care of in the following
discussion. As we will see, they turn out to be irrelevant
for our purpose except for the QED case.

Because the SM is a renormalizable theory, the SM am-
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have to hold for i = QED, Weak, and QCD. Here,
Ai(s) := Mi(s, t = 0) is the forward limit amplitude.

The relations (8) conclude B(2)
i (⇤ ! 1) = 0. The same

relation does not need to apply to the GR sector, how-
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scale, the GR contribution eventually dominates over the
SM contributions, leading to violation of (6). The maxi-
mum cuto↵ scale of the SM coupled to GR is determined
when the inequality (6) is saturated.

Positivity in QED.— We begin with the light-by-light
scattering in QED coupled to GR which was discussed
recently in [25]. The leading QED contribution is the
one-loop diagram shown in the first diagram of Fig. 2.
The forward limit amplitude is given by
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derivative operators representing corrections from (un-
known) UV physics, which will be taken care of in the
following discussion. As we will see, they turn out to be
irrelevant for our purpose except for the QED case.
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scale of the SM coupled to GR is determined when the
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GR throughout this letter.
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tive corrections that are originated from UV physics
above the scale ⇤. From the EFT perspective, its contri-

bution to B(2) can be estimated as B(2)
UV = ↵UV

⇤4 , where
the dimensionless parameter ↵UV characterizes the size
of interactions at the scale ⇤ and satisfies |↵UV| . 1.

All in all, the gravitational positivity implies the bound
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If the first term is dominant, we have the same bound
as [25], ⇤ .

p
emeMPl. On the other hand, if the second

term is dominant and ↵UV ⇠ 1, we find ⇤ .
p

meMPl/e,
which is the one obtained in [18] from a slightly di↵erent
setup (see footnote 2). In either case, the typical size is

ImℳQCD ≃ Im (P: Pomeroon, R: Reggeon)

- extrapolating the Vector Meson Dominance (VDM) model,

ImℳQCD ≃
25e4

16π2 ( s
GeV2 )

1.08

(See our paper for model-(in)sensitivity)
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Cutoff scale of gravitational SM

Under the assumption , gravitational positivity implies


→ this defines the cutoff of the gravitational SM  GeV.

M ≫ me

BQED(Λ) + BUV(Λ) + Bweak(Λ) + BQCD(Λ) > − BGR(Λ)

Λ ≃ 3 × 1016

4

⇤ < ⇤QED ⇠ 108GeV which is regarded as the maximum
cuto↵ scale of QED coupled to GR. A new physics is
required below ⇤QED to satisfy the bound (6). Needless
to say, we already know the “new” physics, weak force
and strong force, in nature and these physics contribute
to the light-by-light scattering well below 108GeV.

Positivity in Electroweak Theory.— We then include
the weak sector into our consideration. While charged
lepton loops provide the same contribution as (10) (after
a replacement of me by the lepton masses), W bosons
yield a qualitatively di↵erent contribution because of the
spin-1 nature. In the high-energy limit (|s| � m2

W ), the
one-loop amplitude is5

AWeak ⇡
32↵2

m2
W

s ln
m2

W

�s
+ (s $ �s). (13)

In contrast to (9), the imaginary part of the amplitude
grows linearly in s in the high-energy limit. Accordingly,
the weak sector contribution to B(2) reads

B(2)
Weak ⇡

128↵2

m2
W⇤2

, (14)

which decreases as ⇤�2. Then, the W boson contribu-

tion B(2)
Weak eventually dominates over the fermion loop

contributions (10) at UV (see Fig. 5, where we plot B(2)
i

without using the high-energy approximation). The UV

physics e↵ect B(2)
UV / ⇤�4 also becomes subdominant in

the same regime. As a result, we obtain the cuto↵ which
is much larger than the one obtained in QED case,

⇤EW =

r
2880⇡↵

11

meMPl

mW
' 3.8⇥ 1013GeV . (15)

It is worth mentioning that after taking the high-
energy limit ⇤ � m, the fermion contribution (10) is
almost independent of the fermion mass and the mass
of spin-1 particle (W boson) appears in the denomina-
tor of (14). Therefore, we may continue to increase ⇤
even if new charged spin-1/2 or spin-1 states, namely
new physics, appear because they are subdominant in
B(2)(⇤). The result must be insensitive to inclusion of
new charged particles at UV regime as far as the theory
is weakly coupled6. On the other hand, QCD is not a
weakly coupled theory and, more importantly, QCD ac-
commodates mesons that are lighter than W bosons. The
result here must be insensitive to unknown UV physics
involving up to spin-1 particles but sensitive to QCD.

5 The one-loop diagrams are calculated by using the Mathematica
packages FeynArts [28] and FeynCalc [29], and the loop inte-
grals are evaluated by Package-X [30]. As a consistency check,
we confirm the desired crossing symmetries, the relation (8), and
the agreement with two di↵erent gauge choices, the Feynman-’t
Hooft gauge and the unitary gauge.

6 The inclusion of a charged spin-0 particle does not change the
situation as well. See [25] for the analysis in scalar QED.
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FIG. 5. The ⇤ dependence of B(2)
i where i = QED (red),

Weak (blue), and QCD (green), and the black dashed line

represents �B(2)
GR. The intersection between the solid line and

the dashed line determines the cuto↵ ⇤i.

Positivity in Standard Model.— We finally take into
account all the known physics and evaluate the cuto↵
scale of the SM by means of the gravitational positivity
bounds. Since (non-gravitational) QCD amplitudes have

to satisfy (8), we can compute B(2)
QCD from the imaginary

part of the forward limit amplitude ImAQCD at UV. A
nontriviality here is that in the forward limit, the momen-
tum transfer is soft and so the non-perturbative physics
of QCD contributes to ImAQCD even at UV via t-channel
diagrams. To compute the light-by-light scattering in the
forward limit, we use the vector meson dominance model
(VDM) and consider intermediate hadronic excitations,
which we call the VDM-Regge model following [31].

The relevant Feynman diagrams in the VDM-Regge
model are shown in Fig. 4. The photon is supposed to
transform into vector mesons Vi = ⇢,!,� before the col-
lision and the mesons undergo the hadronic processes ex-
changing Pomeron and Reggeon (P and R in Fig. 4). The
corresponding amplitude reads [31]

MQCD ⇡ 4
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�!Vi

!2

MV V!V V

0

@
X

j

C2
Vj!�

1

A
2

,

(16)
where C2

�!Vi
are the transition constants and the

hadronic interactions are supposed to be the universal
form. MV V!V V is composed of two contributions, the
Pomeron exchange and the Reggeon exchange, where the
former one provides the faster than linear growth in s
while the latter one is subdominant at UV. Also, the
prefactor 4 originates from the helicity sum. The imagi-

BQED(Λ) + BUV(Λ) ∼ Λ−4

Bweak(Λ) ∼ m−2
W Λ−2

BQCD(Λ) ∼ GeV−2.08Λ−1.92

|BGR(Λ) | ∼ m−2
e M2

Pl



B(Λ) := c2,0 −
2
π ∫

Λ2

m2
th

ds
Imℳ(s, t = 0)

s3

Summary of the section


We discussed gravitational positivity bounds   in the SM.


- Negative contributions from GR: .


- If  is a UV scale, nontrivial constraints on the particle spectrum.


  a) In the EW theory w/o QCD,  we found a WGC type bound on Yukawa couplings.


  b) The maximum cutoff is  GeV, which is reminiscent of grand unification.


- If the sign of RHS is negative and  is an IR scale , no nontrivial constraints,


  but it means the imaginary part of the Regge amplitudes is highly IR-dependent.


                                                                            [cf. Alberte-de Rham-Jaitly-Tolley ’21]

B(Λ) > ± 1
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derivative operators representing corrections from (un-
known) UV physics, which will be taken care of in the
following discussion. As we will see, they turn out to be
irrelevant for our purpose except for the QED case.

Because the SM is a renormalizable theory, the SM am-
plitude satisfies the twice-subtracted dispersion relation,
meaning that the relations

B(2)
i (⇤) =

4

⇡

Z 1

⇤2

ds0
ImAi(s0 + i✏)

s03
(8)

have to hold for i = QED, Weak, and QCD. Here,
Ai(s) := Mi(s, t = 0) is the forward limit amplitude.

The relations (8) conclude B(2)
i (⇤ ! 1) = 0. The same

relation does not need to apply to the GR sector, how-
ever, because GR is not UV complete; as we will see,

B(2)
GR(⇤ ! 1) ! constant < 0. As ⇤ increases, the GR

contribution eventually dominates over the SM contribu-
tions, leading to violation of (6). The maximum cuto↵
scale of the SM coupled to GR is determined when the
inequality (6) is saturated.

Positivity in QED.— We begin with the light-by-light
scattering in QED coupled to GR which was discussed
recently in [25]. The leading QED contribution is the
one-loop diagram shown in the first diagram of Fig. 2.
The forward limit amplitude is given by
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(9)

in the high-energy limit |s| � m2
e, where ↵ = e2/4⇡ is the

fine-structure constant. B(2)(⇤) from the QED process
at one-loop level is
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for ⇤ � me. Regarding MGR, we have the tree and one-
loop diagrams up to O(M�2

Pl ) as shown in Fig. 2. The
tree level (pole) contribution is cancelled with the high-
energy integral of RHS of (4). As a result, the one-loop
diagram is the leading gravitational contribution to the
bound (6). In the high-energy limit, we obtain

B(2)
GR ⇡ �

22↵

45⇡m2
eM

2
Pl

. (11)

Whereas B(2)
QED vanishes as ⇤ ! 1, B(2)

GR approaches
a negative constant in the limit ⇤ ! 1. This is why
we obtain a nontrivial cuto↵ scale from (approximate)
positivity bounds.

We remark that the result (11) can be used even in
the later analysis beyond QED. In general, the one-loop

contribution to B(2)
GR from charged particles should be

proportional to e2/M2
Pl and the dimensional analysis con-

cludes B(2)
GR / e2/(m2M2

Pl), where m is the mass of the
propagating particle in the loop. Therefore, the lightest
charged particle should provide the dominant contribu-

tion to B(2)
GR. We thus take into account the electron loop

only to compute B(2)
GR throughout this letter.

Now we discuss implications of the gravitational pos-
itivity bound (6). First, we can simply discard the
O(M�2

Pl M
�2
s ) uncertainty in (6) because the GR contri-

bution (11) is much larger than the uncertainty. Second,
as we mentioned earlier, there are potential higher deriva-
tive corrections that are originated from UV physics
above the cuto↵ scale ⇤. From the EFT perspective,

its contribution to B(2) can be estimated as B(2)
UV = ↵UV

⇤4 ,
where |↵UV| . 1 characterizes the size of interactions at
the scale ⇤.

All in all, the gravitational positivity implies the bound

B(2)
QED +B(2)

UV +B(2)
GR > 0, yielding
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If the first term is dominant, we have the same bound
as [25], ⇤ .

p
emeMPl. On the other hand, if the second

term is dominant and ↵UV ⇠ 1, we find ⇤ .
p

meMPl/e,
which is the one obtained in [18] from a slightly di↵erent
setup (see footnote 2). In either case, the typical size is
⇤ < ⇤QED ⇠ 108GeV which is regarded as the maximum
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derivative operators representing corrections from (un-
known) UV physics, which will be taken care of in the
following discussion. As we will see, they turn out to be
irrelevant for our purpose except for the QED case.

Because the SM is a renormalizable theory, the SM am-
plitude satisfies the twice-subtracted dispersion relation,
meaning that the relations

B(2)
i (⇤) =

4

⇡

Z 1

⇤2

ds0
ImAi(s0 + i✏)

s03
(8)

have to hold for i = QED, Weak, and QCD. Here,
Ai(s) := Mi(s, t = 0) is the forward limit amplitude.

The relations (8) conclude B(2)
i (⇤ ! 1) = 0. The same

relation does not need to apply to the GR sector, how-
ever, because GR is not UV complete; as we will see,

B(2)
GR(⇤ ! 1) ! constant < 0. As ⇤ increases, the GR

contribution eventually dominates over the SM contribu-
tions, leading to violation of (6). The maximum cuto↵
scale of the SM coupled to GR is determined when the
inequality (6) is saturated.

Positivity in QED.— We begin with the light-by-light
scattering in QED coupled to GR which was discussed
recently in [25]. The leading QED contribution is the
one-loop diagram shown in the first diagram of Fig. 2.
The forward limit amplitude is given by
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in the high-energy limit |s| � m2
e, where ↵ = e2/4⇡ is the

fine-structure constant. B(2)(⇤) from the QED process
at one-loop level is

B(2)
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64↵2

⇤4

✓
ln

⇤

me
�

1

4

◆
(10)

�

� �

�

P,R

Vi = ⇢,!,�

FIG. 4. Feynman diagrams relevant for MQCD.

for ⇤ � me. Regarding MGR, we have the tree and one-
loop diagrams up to O(M�2

Pl ) as shown in Fig. 2. The
tree level (pole) contribution is cancelled with the high-
energy integral of RHS of (4). As a result, the one-loop
diagram is the leading gravitational contribution to the
bound (6). In the high-energy limit, we obtain

B(2)
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45⇡m2
eM

2
Pl

. (11)

Whereas B(2)
QED vanishes as ⇤ ! 1, B(2)

GR approaches
a negative constant in the limit ⇤ ! 1. This is why
we obtain a nontrivial cuto↵ scale from (approximate)
positivity bounds.

We remark that the result (11) can be used even in
the later analysis beyond QED. In general, the one-loop

contribution to B(2)
GR from charged particles should be

proportional to e2/M2
Pl and the dimensional analysis con-

cludes B(2)
GR / e2/(m2M2

Pl), where m is the mass of the
propagating particle in the loop. Therefore, the lightest
charged particle should provide the dominant contribu-

tion to B(2)
GR. We thus take into account the electron loop

only to compute B(2)
GR throughout this letter.

Now we discuss implications of the gravitational pos-
itivity bound (6). First, we can simply discard the
O(M�2

Pl M
�2
s ) uncertainty in (6) because the GR contri-

bution (11) is much larger than the uncertainty. Second,
as we mentioned earlier, there are potential higher deriva-
tive corrections that are originated from UV physics
above the cuto↵ scale ⇤. From the EFT perspective,

its contribution to B(2) can be estimated as B(2)
UV = ↵UV

⇤4 ,
where |↵UV| . 1 characterizes the size of interactions at
the scale ⇤.

All in all, the gravitational positivity implies the bound

B(2)
QED +B(2)

UV +B(2)
GR > 0, yielding
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If the first term is dominant, we have the same bound
as [25], ⇤ .

p
emeMPl. On the other hand, if the second

term is dominant and ↵UV ⇠ 1, we find ⇤ .
p

meMPl/e,
which is the one obtained in [18] from a slightly di↵erent
setup (see footnote 2). In either case, the typical size is
⇤ < ⇤QED ⇠ 108GeV which is regarded as the maximum
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computed accordingly. In general, EFT must contain
higher derivative operators representing corrections from
UV physics, which will be taken care of in the following
discussion. As we will see, they turn out to be irrelevant
for our purpose except for the QED case.

Because the SM is a renormalizable theory, the SM am-
plitude satisfies the twice-subtracted dispersion relation,
meaning that the relations

B(2)
i (⇤) =

4

⇡

Z 1

⇤2

ds0
ImAi(s0 + i✏)

s03
(8)

have to hold for i = QED, Weak, and QCD. Here,
Ai(s) := Mi(s, t = 0) is the forward limit amplitude.

The relations (8) conclude B(2)
i (⇤ ! 1) = 0. The same

relation does not need to apply to the GR sector, how-
ever, because GR is not UV complete; as we will see,

B(2)
GR(⇤ ! 1) ! constant < 0. As ⇤ increases, i.e.,

as the SM coupled to GR is extrapolated to a high-energy
scale, the GR contribution eventually dominates over the
SM contributions, leading to violation of (6). The maxi-
mum cuto↵ scale of the SM coupled to GR is determined
when the inequality (6) is saturated.

Positivity in QED.— We begin with the light-by-light
scattering in QED coupled to GR which was discussed
recently in [25]. The leading QED contribution is the
one-loop diagram shown in the first diagram of Fig. 2.
The forward limit amplitude is given by
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in the high-energy limit |s| � m2
e, where ↵ = e2/4⇡ is the

fine-structure constant. B(2)(⇤) from the QED process
at one-loop level is

B(2)
QED ⇡
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derivative operators representing corrections from (un-
known) UV physics, which will be taken care of in the
following discussion. As we will see, they turn out to be
irrelevant for our purpose except for the QED case.

Because the SM is a renormalizable theory, the SM am-
plitude satisfies the twice-subtracted dispersion relation,
meaning that the relations

B(2)
i (⇤) =

4

⇡

Z 1

⇤2

ds0
ImAi(s0 + i✏)

s03
(8)

have to hold for i = QED, Weak, and QCD. Here,
Ai(s) := Mi(s, t = 0) is the forward limit amplitude.

The relations (8) conclude B(2)
i (⇤ ! 1) = 0. The same

relation does not need to apply to the GR sector, how-
ever, because GR is not UV complete; as we will see,

B(2)
GR(⇤ ! 1) ! constant < 0. As ⇤ increases, the GR

contribution eventually dominates over the SM contribu-
tions, leading to violation of (6). The maximum cuto↵
scale of the SM coupled to GR is determined when the
inequality (6) is saturated.

Positivity in QED.— We begin with the light-by-light
scattering in QED coupled to GR which was discussed
recently in [25]. The leading QED contribution is the
one-loop diagram shown in the first diagram of Fig. 2.
The forward limit amplitude is given by
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in the high-energy limit |s| � m2
e, where ↵ = e2/4⇡ is the

fine-structure constant. B(2)(⇤) from the QED process
at one-loop level is
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for ⇤ � me. Regarding MGR, we have the tree and one-
loop diagrams up to O(M�2

Pl ) as shown in Fig. 2. The
tree level (pole) contribution is cancelled with the high-
energy integral of RHS of (4). As a result, the one-loop
diagram is the leading gravitational contribution to the
bound (6). In the high-energy limit, we obtain
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Whereas B(2)
QED vanishes as ⇤ ! 1, B(2)

GR approaches
a negative constant in the limit ⇤ ! 1. This is why
we obtain a nontrivial cuto↵ scale from (approximate)
positivity bounds.

We remark that the result (11) can be used even in
the later analysis beyond QED. In general, the one-loop

contribution to B(2)
GR from charged particles should be

proportional to e2/M2
Pl and the dimensional analysis con-

cludes B(2)
GR / e2/(m2M2

Pl), where m is the mass of the
propagating particle in the loop. Therefore, the lightest
charged particle should provide the dominant contribu-

tion to B(2)
GR. We thus take into account the electron loop

only to compute B(2)
GR throughout this letter.

Now we discuss implications of the gravitational pos-
itivity bound (6). First, we can simply discard the
O(M�2

Pl M
�2
s ) uncertainty in (6) because the GR contri-

bution (11) is much larger than the uncertainty. Second,
as we mentioned earlier, there are potential higher deriva-
tive corrections that are originated from UV physics
above the cuto↵ scale ⇤. From the EFT perspective,

its contribution to B(2) can be estimated as B(2)
UV = ↵UV

⇤4 ,
where |↵UV| . 1 characterizes the size of interactions at
the scale ⇤.

All in all, the gravitational positivity implies the bound
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as [25], ⇤ .
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which is the one obtained in [18] from a slightly di↵erent
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for ⇤ � me. Regarding MGR, we have the tree and one-
loop diagrams up to O(M�2

Pl ) as shown in Fig. 2. The
tree level (pole) contribution is cancelled with the high-
energy integral of RHS of (4). As a result, the one-loop
diagram is the leading gravitational contribution to the
bound (6). In the high-energy limit, we obtain
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Whereas B(2)
QED vanishes as ⇤ ! 1, B(2)

GR approaches
a negative constant in the limit ⇤ ! 1. This is why
we obtain a nontrivial cuto↵ scale from (approximate)
positivity bounds.

It is also convenient to remark that the result (11)
can be used even in the later analysis beyond QED. In

general, the one-loop contribution to B(2)
GR from charged

particles should be proportional to e2/M2
Pl and the di-

mensional analysis concludes B(2)
GR / e2/(m2M2

Pl), where
m is the mass of the propagating particle in the loop.
Therefore, the lightest charged particle should provide

the dominant contribution to B(2)
GR. We thus take into

account the electron loop only to compute B(2)
GR through-

out this letter.

Now we discuss implications of the gravitational pos-
itivity bound (6). First, we can simply discard the
O(M�2

Pl M
�2
s ) uncertainty in (6) because the GR contri-

bution (11) is much larger than the uncertainty. Second,
as we mentioned earlier, there are potential higher deriva-
tive corrections that are originated from UV physics
above the scale ⇤. From the EFT perspective, its contri-

bution to B(2) can be estimated as B(2)
UV = ↵UV

⇤4 , where
the dimensionless parameter ↵UV characterizes the size
of interactions at the scale ⇤ and satisfies |↵UV| . 1.

All in all, the gravitational positivity implies the bound

B(2)
QED +B(2)

UV +B(2)
GR > 0, yielding

64↵2

⇤4

✓
ln

⇤

me
�

1

4

◆
+

↵UV

⇤4
>

22↵

45⇡m2
eM

2
Pl

. (12)

If the first term is dominant, we have the same bound
as [25], ⇤ .

p
emeMPl. On the other hand, if the second

term is dominant and ↵UV ⇠ 1, we find ⇤ .
p

meMPl/e,
which is the one obtained in [18] from a slightly di↵erent
setup (see footnote 2). In either case, the typical size is
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A general consideration about dark sector physics
[Andriolo-Junghans-TN-Shiu ’18, TN-Sato-Tokuda ’22]



Dark sector cannot be too dark?

gravity

other tiny interactions (if any)

our world (SM) dark sector

- Consider scattering of SM particles and dark sector particles:

= ℳGR + ℳothers

- Positivity implies 

 ※ To our knowledge,  is quite universal.

Bothers(Λ) > − BGR(Λ) ± 1
M2

PlM2

BGR(Λ) < 0

- Under the assumption “ ,” we have .


   →  cannot be too small, so the dark sector cannot be too dark?

M ≫ me Bothers(Λ) > − BGR(Λ)

Bothers(Λ)



Intuition from extra dimensions

our world (SM) dark sector

Extra dimensions

- We need large extra dimensions to separate the dark sector from our world.


- If extra dimensions are too large, gravity becomes weak.


- An upper bound on the distance between our world and dark sector


  as long as we turn on gravity by keeping extra dimensions finite?



example: dark photons [TN-Sato-Tokuda ’22]



Two scenarios for dark photons

gravity

other tiny interactions (if any)

our world (SM) dark photon X

How to realize  ?


1. Large enough kinetic mixing 

 

2. Light enough particles charged under both U(1)’s 

Bothers(Λ) > − BGR(Λ)
χ

ℒ ∋ −
1
4

F2
X −

1
2

m2
XX2 + χ e XμJEM

μ

X
X
γ

γ

Two types of forward scattering:


1.     (transverse modes)


2.     (longitudinal moes)

γXT → γXT

γXL → γXL



Scenario 1: large kinetic mixing

Suppose that particles charged under both U(1)’s are too heavy,


so that the kinetic mixing  is the dominant source of .χ Bothers(Λ)

1.    (transverse modes)


   ⇄   

                                        ⇄   .

γXT → γXT

Bothers(Λ) > − BGR(Λ)
2e4χ2

π2m2
WΛ2

>
11e2

720π2m2
e M2

Pl

χ >
11

1440e2

mWΛ
meMPl

= 1.9 × 10−11 Λ
1TeV

2.    (longitudinal modes)


   ⇄   

                                        ⇄   .

γXT → γXT

Bothers(Λ) > − BGR(Λ)
e4χ2m2

X

2π2m4
WΛ2

>
11e2

720π2m2
e M2

Pl

χ >
11

360e2

m2
WΛ

memXMPl
= 3.0

Λ
1TeV

1eV
MX



black: transverse, white: longitudinal 

This mass range is allowed only when . 

（QCD effects will not change the results very much）

M ∼ me

4

The rotation (17) generates tiny couplings between
A0 and the Standard Model: they are included in
LSM|Ab!A�(✏/

p
1�✏2)A0 . By contrast, couplings between

A and hidden matters are not induced by this rotation.
Below, we call A and A0 photon and the dark photon,
respectively, and analyze the photon-dark photon scat-
tering ��0

! ��0.
The amplitude depends on the helicity configurations

in general. For the process with transversely polarized
dark photon, we consider

MT (s, t) :=
1
4

⇥
M(1+2+3+4+) +M(1+2�3+4�)

+M(1�2�3�4�) +M(1�2+3�4+)
⇤
,

where 1 and 2 (3 and 4) are the ingoing (outgoing) pho-
ton and dark photon, respectively, and the superscript
± denotes the helicity. For the process with longitudinal
modes, we consider

ML(s, t) :=
1

2

⇥
M(1+2L3+4L) +M(1�2L3�4L)

⇤
,

where L means the longitudinal polarization. For these
amplitudes, the crossing symmetry implies the s $ u
permutation invariance.

Below, we refer to (B(2)
non-grav, B

(2)
grav) for MT and ML

as (B(2)
T,non-grav, B

(2)
T,grav) and (B(2)

L,non-grav, B
(2)
L,grav), re-

spectively.

A simplest model

To begin with, we consider the simplest model with
Lhm = 0. In this case, the process ��0

! ��0 is mediated
only by the Standard Model particles. For simplicity, we
neglect the QCD sector for a while. Since new particles
coupled to photon below 1 TeV have not been found, we
choose ⇤ � 1 TeV.

The form of interactions between A0 and the Stan-
dard Model particles are the same as those for A ex-
cept that the coupling strength is suppressed by a factor
✏/
p
1� ✏2 ' ✏. As a result, the calculations of MT and

ML are similar to those of the amplitude of the light-
by-light scattering which has been done in [36]. As it is
the case for the light-by-light scattering, in our case, the

dominant contributions to B(2)
non-grav(⇤) at ⇤ � 1TeV are

given by the W-boson loop whereas the dominant term

in B(2)
grav arises from the electron, the lightest charged

particle in the Standard Model. The results are,

B(2)
T,non-grav(⇤) '

32↵2✏2

m2
W⇤2

, B(2)
L,non-grav(⇤) '

8↵2✏2m2
A0

⇤2m4
W

,

B(2)
T,grav(⇤) ' B(2)

L,grav(⇤) ' �
11↵

180⇡m2
eM

2
Pl

, (18)

where ↵ ' 1/137 denotes the fine-structure constant.
Then, (13) implies a lower bound on ✏: from MT we

FIG. 2. The upper bounds (19) and (20) for ⇤ = 1 TeV are
plotted in the (mA0 , ✏)-plane by the black dotted line and the
white line, respectively. We find that there is no parameter
space compatible with experiments and the bound (20). The
figure is made based on the data given in [41, 42].
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while we obtain a stronger constraint from ML as
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r
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These bounds (19) and (20) are plotted in FIG. 2. The
bound (20) also shows the existence of a lower bound on
mA0 for given ✏ and ⇤ (this bound applies to massive dark
photons only, so massless dark photons are free from this
constraint). The origin of the lower bound on mA0 is the

suppression factor (mA0/mW )2 contained in B(2)
L,non-grav.

This factor appears because longitudinal modes of dark
photons are decoupled fromW-bosons in the limitmA0 !

0.
We have neglected QCD contributions so far. Since the

QCD scale is lower than the electroweak scale, it may give

relevant contributions to B(2)
non-grav. Indeed, QCD e↵ects,

particularly the Pomeron exchange, provide the leading

contribution to B(2)
non-grav in the Standard Model analysis

of [36]. If we extend the analysis to transversely polarized
dark photons simply by multiplying the factor ✏ to the
coupling between photon and Pomeron, the bound (19)
is slightly relaxed as ✏ & 10�13 for ⇤ ⇠ 1 TeV.
It would be interesting to investigate how much the

bound (20) is relaxed when QCD is taken into account.
In general, the QCD contributions to ML will be sup-
pressed by the dark photon mass mA0 at least as long the
mass is the Stückelberg mass. We thus expect that the

Scenario 1: large kinetic mixing



black: transverse, white: longitudinal 

This mass range is allowed only when . 

（QCD effects will not change the results very much）

M ∼ me

4

The rotation (17) generates tiny couplings between
A0 and the Standard Model: they are included in
LSM|Ab!A�(✏/

p
1�✏2)A0 . By contrast, couplings between

A and hidden matters are not induced by this rotation.
Below, we call A and A0 photon and the dark photon,
respectively, and analyze the photon-dark photon scat-
tering ��0

! ��0.
The amplitude depends on the helicity configurations

in general. For the process with transversely polarized
dark photon, we consider

MT (s, t) :=
1
4

⇥
M(1+2+3+4+) +M(1+2�3+4�)

+M(1�2�3�4�) +M(1�2+3�4+)
⇤
,

where 1 and 2 (3 and 4) are the ingoing (outgoing) pho-
ton and dark photon, respectively, and the superscript
± denotes the helicity. For the process with longitudinal
modes, we consider

ML(s, t) :=
1

2

⇥
M(1+2L3+4L) +M(1�2L3�4L)

⇤
,

where L means the longitudinal polarization. For these
amplitudes, the crossing symmetry implies the s $ u
permutation invariance.

Below, we refer to (B(2)
non-grav, B

(2)
grav) for MT and ML

as (B(2)
T,non-grav, B

(2)
T,grav) and (B(2)

L,non-grav, B
(2)
L,grav), re-

spectively.

A simplest model

To begin with, we consider the simplest model with
Lhm = 0. In this case, the process ��0

! ��0 is mediated
only by the Standard Model particles. For simplicity, we
neglect the QCD sector for a while. Since new particles
coupled to photon below 1 TeV have not been found, we
choose ⇤ � 1 TeV.

The form of interactions between A0 and the Stan-
dard Model particles are the same as those for A ex-
cept that the coupling strength is suppressed by a factor
✏/
p
1� ✏2 ' ✏. As a result, the calculations of MT and

ML are similar to those of the amplitude of the light-
by-light scattering which has been done in [36]. As it is
the case for the light-by-light scattering, in our case, the

dominant contributions to B(2)
non-grav(⇤) at ⇤ � 1TeV are

given by the W-boson loop whereas the dominant term

in B(2)
grav arises from the electron, the lightest charged

particle in the Standard Model. The results are,

B(2)
T,non-grav(⇤) '

32↵2✏2

m2
W⇤2

, B(2)
L,non-grav(⇤) '
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, (18)

where ↵ ' 1/137 denotes the fine-structure constant.
Then, (13) implies a lower bound on ✏: from MT we

FIG. 2. The upper bounds (19) and (20) for ⇤ = 1 TeV are
plotted in the (mA0 , ✏)-plane by the black dotted line and the
white line, respectively. We find that there is no parameter
space compatible with experiments and the bound (20). The
figure is made based on the data given in [41, 42].
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while we obtain a stronger constraint from ML as
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These bounds (19) and (20) are plotted in FIG. 2. The
bound (20) also shows the existence of a lower bound on
mA0 for given ✏ and ⇤ (this bound applies to massive dark
photons only, so massless dark photons are free from this
constraint). The origin of the lower bound on mA0 is the

suppression factor (mA0/mW )2 contained in B(2)
L,non-grav.

This factor appears because longitudinal modes of dark
photons are decoupled fromW-bosons in the limitmA0 !

0.
We have neglected QCD contributions so far. Since the

QCD scale is lower than the electroweak scale, it may give

relevant contributions to B(2)
non-grav. Indeed, QCD e↵ects,

particularly the Pomeron exchange, provide the leading

contribution to B(2)
non-grav in the Standard Model analysis

of [36]. If we extend the analysis to transversely polarized
dark photons simply by multiplying the factor ✏ to the
coupling between photon and Pomeron, the bound (19)
is slightly relaxed as ✏ & 10�13 for ⇤ ⇠ 1 TeV.
It would be interesting to investigate how much the

bound (20) is relaxed when QCD is taken into account.
In general, the QCD contributions to ML will be sup-
pressed by the dark photon mass mA0 at least as long the
mass is the Stückelberg mass. We thus expect that the

Scenario 1: large kinetic mixing

Two lessons:


1. Longitudinal scattering gives a stronger constraint.


2. Scenario 1 seems difficult, so we need light enough bi-charged particles.



Scenario 2: bi-charged particles

Suppose that there exists a bi-charged massive vector boson .V

Consider the longitudinal scattering     (  : dark photon gauge coupling)


   ⇄   

                                        ⇄   .


 ※ dark photon mass cannot be too small, since the vector boson  is coupled to photon.


 ※ if  were spin 0 or spin 1/2, the situation becomes worse.


We can also think of it as a lower bound on the dark photon mass:


 ⇄ .

γXL → γXL ẽ

Bothers(Λ) > − BGR(Λ)
e2ẽ2m2

X

2π2m4
VΛ2

>
11e2

720π2m2
e M2

Pl

mV < (m2
VΛ)1/3 < 1.3 TeV ( ẽ

e )
1/3

( mX

103 eV )
1/3

V
V

Bothers(Λ) > − BGR(Λ) mX > 4.7 × 102 eV ×
e
ẽ ( MV

1 TeV )
2 Λ

1 TeV



lower bound on dark photon mass:  

（QCD effects will weaken the condition by ～ 1/10）

mA′￼> 500 eV

4

The rotation (17) generates tiny couplings between
A0 and the Standard Model: they are included in
LSM|Ab!A�(✏/

p
1�✏2)A0 . By contrast, couplings between

A and hidden matters are not induced by this rotation.
Below, we call A and A0 photon and the dark photon,
respectively, and analyze the photon-dark photon scat-
tering ��0

! ��0.
The amplitude depends on the helicity configurations

in general. For the process with transversely polarized
dark photon, we consider

MT (s, t) :=
1
4

⇥
M(1+2+3+4+) +M(1+2�3+4�)

+M(1�2�3�4�) +M(1�2+3�4+)
⇤
,

where 1 and 2 (3 and 4) are the ingoing (outgoing) pho-
ton and dark photon, respectively, and the superscript
± denotes the helicity. For the process with longitudinal
modes, we consider

ML(s, t) :=
1

2

⇥
M(1+2L3+4L) +M(1�2L3�4L)

⇤
,

where L means the longitudinal polarization. For these
amplitudes, the crossing symmetry implies the s $ u
permutation invariance.

Below, we refer to (B(2)
non-grav, B

(2)
grav) for MT and ML

as (B(2)
T,non-grav, B

(2)
T,grav) and (B(2)

L,non-grav, B
(2)
L,grav), re-

spectively.

A simplest model

To begin with, we consider the simplest model with
Lhm = 0. In this case, the process ��0

! ��0 is mediated
only by the Standard Model particles. For simplicity, we
neglect the QCD sector for a while. Since new particles
coupled to photon below 1 TeV have not been found, we
choose ⇤ � 1 TeV.

The form of interactions between A0 and the Stan-
dard Model particles are the same as those for A ex-
cept that the coupling strength is suppressed by a factor
✏/
p
1� ✏2 ' ✏. As a result, the calculations of MT and

ML are similar to those of the amplitude of the light-
by-light scattering which has been done in [36]. As it is
the case for the light-by-light scattering, in our case, the

dominant contributions to B(2)
non-grav(⇤) at ⇤ � 1TeV are

given by the W-boson loop whereas the dominant term

in B(2)
grav arises from the electron, the lightest charged

particle in the Standard Model. The results are,
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where ↵ ' 1/137 denotes the fine-structure constant.
Then, (13) implies a lower bound on ✏: from MT we

FIG. 2. The upper bounds (19) and (20) for ⇤ = 1 TeV are
plotted in the (mA0 , ✏)-plane by the black dotted line and the
white line, respectively. We find that there is no parameter
space compatible with experiments and the bound (20). The
figure is made based on the data given in [41, 42].
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while we obtain a stronger constraint from ML as
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These bounds (19) and (20) are plotted in FIG. 2. The
bound (20) also shows the existence of a lower bound on
mA0 for given ✏ and ⇤ (this bound applies to massive dark
photons only, so massless dark photons are free from this
constraint). The origin of the lower bound on mA0 is the

suppression factor (mA0/mW )2 contained in B(2)
L,non-grav.

This factor appears because longitudinal modes of dark
photons are decoupled fromW-bosons in the limitmA0 !

0.
We have neglected QCD contributions so far. Since the

QCD scale is lower than the electroweak scale, it may give

relevant contributions to B(2)
non-grav. Indeed, QCD e↵ects,

particularly the Pomeron exchange, provide the leading

contribution to B(2)
non-grav in the Standard Model analysis

of [36]. If we extend the analysis to transversely polarized
dark photons simply by multiplying the factor ✏ to the
coupling between photon and Pomeron, the bound (19)
is slightly relaxed as ✏ & 10�13 for ⇤ ⇠ 1 TeV.
It would be interesting to investigate how much the

bound (20) is relaxed when QCD is taken into account.
In general, the QCD contributions to ML will be sup-
pressed by the dark photon mass mA0 at least as long the
mass is the Stückelberg mass. We thus expect that the

bi-charged vector ( )MV = 1TeV, ẽ = e
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Summary


1. Positivity bounds on low-energy scattering amplitudes provide


    a criterion for a low-energy EFT to be UV completable in the standard manner


 → provides a Swampland condition when applied to gravitational EFTs


2. Positivity in gravitational Standard Model [Aoki-Loc-TN-Tokuda ’21]

    Under the assumption “ ,” we found


    - The maximum cutoff scale of gravitational SM is  GeV


    - A WGC type bound the electron Yukawa coupling and the Weinberg angle.


3. Possible implications for the dark sector [TN-Sato-Tokuda ’22]

    The same assumption “ ” implies that dark sector cannot be too dark.

M ≫ me

Λ ∼ 1016

M ≫ me



Future directions 

A) sharpen gravitational positivity bounds


  cf. [Arkani-Hamed et al ’20, Caron-Huot et al ’21, Alberte et al ’21, …]


  - How generic the assumption “ ” is?


  - detailed study of string loop amplitudes in 4D will also be useful.


B) more phenomenological applications (DM, neutrinos, …)


                                             [in progress w/Sato-Tokuda + Aoki-Saito-Shirai-Yamazaki]


C) bootstrap based on other principles


 - scattering positivity = positivity of corrections to BH entropy [ex. w/Hamada, Shiu, Loges]

  ※ BH physics may be useful to sharpen gravitational positivity???


 - recent developments on BH evaporation vs unitary time-evolution


  ※ Is symmetry-resolved entropy useful? [Milekhin-Tajdini ’21, Lau-TN-Tamaoka-Takii ’22]


D) cosmological bootstrap: bootstrapping dS correlators


 - useful for the dark energy problem??? (IR completion)

M ≫ me



Future directions 

A) sharpen gravitational positivity bounds


  cf. [Arkani-Hamed et al ’20, Caron-Huot et al ’21, Alberte et al ’21, …]


  - How generic the assumption “ ” is?


  - detailed study of string loop amplitudes in 4D will also be useful.


B) more phenomenological applications (DM, neutrinos, …)


                                             [in progress w/Sato-Tokuda + Aoki-Saito-Shirai-Yamazaki]


C) bootstrap based on other principles


 - scattering positivity = positivity of corrections to BH entropy [ex. w/Hamada, Shiu, Loges]

  ※ BH physics may be useful to sharpen gravitational positivity???


 - recent developments on BH evaporation vs unitary time-evolution


  ※ Is symmetry-resolved entropy useful? [Milekhin-Tajdini ’21, Lau-TN-Tamaoka-Takii ’22]


D) cosmological bootstrap: bootstrapping dS correlators


 - useful for the dark energy problem??? (IR completion)

M ≫ me

Thank you!
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Positivity bounds w/o gravity
[Adams et al ’06]

ℒ = −
1
2

∂μϕ∂μϕ + α(∂μϕ∂μϕ)2 + ⋯

ℒ = −
1
4

FμνFμν + α1(FμνFμν)2 + α2(Fμν F̃ μν)2 + …
α, α1, α2 ≥ 0



A key idea of positivity bounds:


connect UV and IR using analyticity of scattering amplitudes



Consider an s-u symmetric scattering amplitude  in the forward limit.ℳ(s, t)

Positivity bounds w/o gravity

IR expansion in the forward limit: 


 ,


 

ℳ(s, t = 0) = ∑
n

a2n s2n

a2n = ∮C0

ds
2πi

ℳ(s, t = 0)
s2n+1



Consider an s-u symmetric scattering amplitude  in the forward limit.ℳ(s, t)

Positivity bounds w/o gravity

analytic structure of ℳ(s, t = 0)

s

m2
th−m2

th

C0
IR expansion in the forward limit: 


 ,


 .

ℳ(s, t = 0) = ∑
n

a2n s2n

a2n = ∮C0

ds
2πi

ℳ(s, t = 0)
s2n+1



Positivity bounds w/o gravity

analytic structure of ℳ(s, t = 0)

s

m2
th−m2

th

IR expansion in the forward limit: 


 ,


 .

ℳ(s, t = 0) = ∑
n

a2n s2n

a2n = ∮C0

ds
2πi

ℳ(s, t = 0)
s2n+1

Deform the integration contour to rewrite it in the UV language:


 .a2n =
2
π ∫

∞

m2
th

ds
Imℳ(s, t = 0)

s2n+1
+ ∮C∞

ds
2πi

ℳ(s, t = 0)
s2n+1

※ used the s-u symmetry and  Disc ℳ(s, t = 0) = 2i Im ℳ(s, t = 0)

Consider an s-u symmetric scattering amplitude  in the forward limit.ℳ(s, t)



Positivity bounds w/o gravity

analytic structure of ℳ(s, t = 0)

s

m2
th−m2

th

IR expansion in the forward limit: 


 ,


 .

ℳ(s, t = 0) = ∑
n

a2n s2n

a2n = ∮C0

ds
2πi

ℳ(s, t = 0)
s2n+1

Deform the integration contour to rewrite it in the UV language:


 .a2n =
2
π ∫

∞

m2
th

ds
Imℳ(s, t = 0)

s2n+1
+ ∮C∞

ds
2πi

ℳ(s, t = 0)
s2n+1

※ used the s-u symmetry and  Disc ℳ(s, t = 0) = 2i Im ℳ(s, t = 0)

If |ℳ(s, t = 0) | < |s |2n

Consider an s-u symmetric scattering amplitude  in the forward limit.ℳ(s, t)



In local gapped theories, unitarity implies .


This leads to the following dispersion relation and the positivity:


                for     

|ℳ(s, t = 0) | < s ln2 s (s → ∞)

a2n =
2
π ∫

∞

m2
th

ds
Imℳ(s, t = 0)

s2n+1
≥ 0 2n = 2,4,…

(Froissart bound)

Positive because of unitarity! 

ℒ = −
1
2

∂μϕ∂μϕ + α(∂μϕ∂μϕ)2 + ⋯

ℒ = −
1
4

FμνFμν + α1(FμνFμν)2 + α2(Fμν F̃ μν)2 + …
α, α1, α2 ≥ 0



How the story changes in the presence of gravity?



# In the presence of gravity, IR scattering amplitudes behave as


  .


 - In the forward limit, the t-channel graviton exchange dominates:


   .


  ※ Positivity of the  coefficient does not follow in a straightforward manner.
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derivative operators representing corrections from (un-
known) UV physics, which will be taken care of in the
following discussion. As we will see, they turn out to be
irrelevant for our purpose except for the QED case.

Because the SM is a renormalizable theory, the SM am-
plitude satisfies the twice-subtracted dispersion relation,
meaning that the relations
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ds0
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have to hold for i = QED, Weak, and QCD. Here,
Ai(s) := Mi(s, t = 0) is the forward limit amplitude.

The relations (8) conclude B(2)
i (⇤ ! 1) = 0. The same

relation does not need to apply to the GR sector, how-
ever, because GR is not UV complete; as we will see,

B(2)
GR(⇤ ! 1) ! constant < 0. As ⇤ increases, the GR

contribution eventually dominates over the SM contribu-
tions, leading to violation of (6). The maximum cuto↵
scale of the SM coupled to GR is determined when the
inequality (6) is saturated.

Positivity in QED.— We begin with the light-by-light
scattering in QED coupled to GR which was discussed
recently in [25]. The leading QED contribution is the
one-loop diagram shown in the first diagram of Fig. 2.
The forward limit amplitude is given by
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for ⇤ � me. Regarding MGR, we have the tree and one-
loop diagrams up to O(M�2

Pl ) as shown in Fig. 2. The
tree level (pole) contribution is cancelled with the high-
energy integral of RHS of (4). As a result, the one-loop
diagram is the leading gravitational contribution to the
bound (6). In the high-energy limit, we obtain

B(2)
GR ⇡ �

22↵

45⇡m2
eM

2
Pl

. (11)

Whereas B(2)
QED vanishes as ⇤ ! 1, B(2)

GR approaches
a negative constant in the limit ⇤ ! 1. This is why
we obtain a nontrivial cuto↵ scale from (approximate)
positivity bounds.

We remark that the result (11) can be used even in
the later analysis beyond QED. In general, the one-loop

contribution to B(2)
GR from charged particles should be

proportional to e2/M2
Pl and the dimensional analysis con-

cludes B(2)
GR / e2/(m2M2

Pl), where m is the mass of the
propagating particle in the loop. Therefore, the lightest
charged particle should provide the dominant contribu-

tion to B(2)
GR. We thus take into account the electron loop

only to compute B(2)
GR throughout this letter.

Now we discuss implications of the gravitational pos-
itivity bound (6). First, we can simply discard the
O(M�2

Pl M
�2
s ) uncertainty in (6) because the GR contri-

bution (11) is much larger than the uncertainty. Second,
as we mentioned earlier, there are potential higher deriva-
tive corrections that are originated from UV physics
above the cuto↵ scale ⇤. From the EFT perspective,

its contribution to B(2) can be estimated as B(2)
UV = ↵UV

⇤4 ,
where |↵UV| . 1 characterizes the size of interactions at
the scale ⇤.

All in all, the gravitational positivity implies the bound
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GR > 0, yielding
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as [25], ⇤ .
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emeMPl. On the other hand, if the second

term is dominant and ↵UV ⇠ 1, we find ⇤ .
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meMPl/e,
which is the one obtained in [18] from a slightly di↵erent
setup (see footnote 2). In either case, the typical size is
⇤ < ⇤QED ⇠ 108GeV which is regarded as the maximum
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derivative operators representing corrections from (un-
known) UV physics, which will be taken care of in the
following discussion. As we will see, they turn out to be
irrelevant for our purpose except for the QED case.

Because the SM is a renormalizable theory, the SM am-
plitude satisfies the twice-subtracted dispersion relation,
meaning that the relations
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have to hold for i = QED, Weak, and QCD. Here,
Ai(s) := Mi(s, t = 0) is the forward limit amplitude.

The relations (8) conclude B(2)
i (⇤ ! 1) = 0. The same

relation does not need to apply to the GR sector, how-
ever, because GR is not UV complete; as we will see,

B(2)
GR(⇤ ! 1) ! constant < 0. As ⇤ increases, the GR

contribution eventually dominates over the SM contribu-
tions, leading to violation of (6). The maximum cuto↵
scale of the SM coupled to GR is determined when the
inequality (6) is saturated.

Positivity in QED.— We begin with the light-by-light
scattering in QED coupled to GR which was discussed
recently in [25]. The leading QED contribution is the
one-loop diagram shown in the first diagram of Fig. 2.
The forward limit amplitude is given by
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for ⇤ � me. Regarding MGR, we have the tree and one-
loop diagrams up to O(M�2

Pl ) as shown in Fig. 2. The
tree level (pole) contribution is cancelled with the high-
energy integral of RHS of (4). As a result, the one-loop
diagram is the leading gravitational contribution to the
bound (6). In the high-energy limit, we obtain
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Whereas B(2)
QED vanishes as ⇤ ! 1, B(2)

GR approaches
a negative constant in the limit ⇤ ! 1. This is why
we obtain a nontrivial cuto↵ scale from (approximate)
positivity bounds.

We remark that the result (11) can be used even in
the later analysis beyond QED. In general, the one-loop

contribution to B(2)
GR from charged particles should be

proportional to e2/M2
Pl and the dimensional analysis con-

cludes B(2)
GR / e2/(m2M2

Pl), where m is the mass of the
propagating particle in the loop. Therefore, the lightest
charged particle should provide the dominant contribu-

tion to B(2)
GR. We thus take into account the electron loop

only to compute B(2)
GR throughout this letter.

Now we discuss implications of the gravitational pos-
itivity bound (6). First, we can simply discard the
O(M�2

Pl M
�2
s ) uncertainty in (6) because the GR contri-

bution (11) is much larger than the uncertainty. Second,
as we mentioned earlier, there are potential higher deriva-
tive corrections that are originated from UV physics
above the cuto↵ scale ⇤. From the EFT perspective,

its contribution to B(2) can be estimated as B(2)
UV = ↵UV

⇤4 ,
where |↵UV| . 1 characterizes the size of interactions at
the scale ⇤.

All in all, the gravitational positivity implies the bound
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which is the one obtained in [18] from a slightly di↵erent
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computed accordingly. In general, EFT must contain
higher derivative operators representing corrections from
UV physics, which will be taken care of in the following
discussion. As we will see, they turn out to be irrelevant
for our purpose except for the QED case.

Because the SM is a renormalizable theory, the SM am-
plitude satisfies the twice-subtracted dispersion relation,
meaning that the relations
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ImAi(s0 + i✏)
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have to hold for i = QED, Weak, and QCD. Here,
Ai(s) := Mi(s, t = 0) is the forward limit amplitude.

The relations (8) conclude B(2)
i (⇤ ! 1) = 0. The same

relation does not need to apply to the GR sector, how-
ever, because GR is not UV complete; as we will see,

B(2)
GR(⇤ ! 1) ! constant < 0. As ⇤ increases, i.e.,

as the SM coupled to GR is extrapolated to a high-energy
scale, the GR contribution eventually dominates over the
SM contributions, leading to violation of (6). The maxi-
mum cuto↵ scale of the SM coupled to GR is determined
when the inequality (6) is saturated.

Positivity in QED.— We begin with the light-by-light
scattering in QED coupled to GR which was discussed
recently in [25]. The leading QED contribution is the
one-loop diagram shown in the first diagram of Fig. 2.
The forward limit amplitude is given by
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derivative operators representing corrections from (un-
known) UV physics, which will be taken care of in the
following discussion. As we will see, they turn out to be
irrelevant for our purpose except for the QED case.

Because the SM is a renormalizable theory, the SM am-
plitude satisfies the twice-subtracted dispersion relation,
meaning that the relations
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have to hold for i = QED, Weak, and QCD. Here,
Ai(s) := Mi(s, t = 0) is the forward limit amplitude.

The relations (8) conclude B(2)
i (⇤ ! 1) = 0. The same

relation does not need to apply to the GR sector, how-
ever, because GR is not UV complete; as we will see,

B(2)
GR(⇤ ! 1) ! constant < 0. As ⇤ increases, the GR

contribution eventually dominates over the SM contribu-
tions, leading to violation of (6). The maximum cuto↵
scale of the SM coupled to GR is determined when the
inequality (6) is saturated.

Positivity in QED.— We begin with the light-by-light
scattering in QED coupled to GR which was discussed
recently in [25]. The leading QED contribution is the
one-loop diagram shown in the first diagram of Fig. 2.
The forward limit amplitude is given by
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for ⇤ � me. Regarding MGR, we have the tree and one-
loop diagrams up to O(M�2

Pl ) as shown in Fig. 2. The
tree level (pole) contribution is cancelled with the high-
energy integral of RHS of (4). As a result, the one-loop
diagram is the leading gravitational contribution to the
bound (6). In the high-energy limit, we obtain
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Whereas B(2)
QED vanishes as ⇤ ! 1, B(2)

GR approaches
a negative constant in the limit ⇤ ! 1. This is why
we obtain a nontrivial cuto↵ scale from (approximate)
positivity bounds.

We remark that the result (11) can be used even in
the later analysis beyond QED. In general, the one-loop

contribution to B(2)
GR from charged particles should be

proportional to e2/M2
Pl and the dimensional analysis con-

cludes B(2)
GR / e2/(m2M2

Pl), where m is the mass of the
propagating particle in the loop. Therefore, the lightest
charged particle should provide the dominant contribu-

tion to B(2)
GR. We thus take into account the electron loop

only to compute B(2)
GR throughout this letter.

Now we discuss implications of the gravitational pos-
itivity bound (6). First, we can simply discard the
O(M�2

Pl M
�2
s ) uncertainty in (6) because the GR contri-

bution (11) is much larger than the uncertainty. Second,
as we mentioned earlier, there are potential higher deriva-
tive corrections that are originated from UV physics
above the cuto↵ scale ⇤. From the EFT perspective,

its contribution to B(2) can be estimated as B(2)
UV = ↵UV

⇤4 ,
where |↵UV| . 1 characterizes the size of interactions at
the scale ⇤.

All in all, the gravitational positivity implies the bound
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term is dominant and ↵UV ⇠ 1, we find ⇤ .
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which is the one obtained in [18] from a slightly di↵erent
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for ⇤ � me. Regarding MGR, we have the tree and one-
loop diagrams up to O(M�2

Pl ) as shown in Fig. 2. The
tree level (pole) contribution is cancelled with the high-
energy integral of RHS of (4). As a result, the one-loop
diagram is the leading gravitational contribution to the
bound (6). In the high-energy limit, we obtain
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Whereas B(2)
QED vanishes as ⇤ ! 1, B(2)

GR approaches
a negative constant in the limit ⇤ ! 1. This is why
we obtain a nontrivial cuto↵ scale from (approximate)
positivity bounds.

It is also convenient to remark that the result (11)
can be used even in the later analysis beyond QED. In

general, the one-loop contribution to B(2)
GR from charged

particles should be proportional to e2/M2
Pl and the di-

mensional analysis concludes B(2)
GR / e2/(m2M2

Pl), where
m is the mass of the propagating particle in the loop.
Therefore, the lightest charged particle should provide

the dominant contribution to B(2)
GR. We thus take into

account the electron loop only to compute B(2)
GR through-

out this letter.

Now we discuss implications of the gravitational pos-
itivity bound (6). First, we can simply discard the
O(M�2

Pl M
�2
s ) uncertainty in (6) because the GR contri-

bution (11) is much larger than the uncertainty. Second,
as we mentioned earlier, there are potential higher deriva-
tive corrections that are originated from UV physics
above the scale ⇤. From the EFT perspective, its contri-

bution to B(2) can be estimated as B(2)
UV = ↵UV

⇤4 , where
the dimensionless parameter ↵UV characterizes the size
of interactions at the scale ⇤ and satisfies |↵UV| . 1.

All in all, the gravitational positivity implies the bound

B(2)
QED +B(2)

UV +B(2)
GR > 0, yielding

64↵2

⇤4

✓
ln

⇤

me
�

1

4

◆
+

↵UV

⇤4
>

22↵

45⇡m2
eM

2
Pl

. (12)

If the first term is dominant, we have the same bound
as [25], ⇤ .
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emeMPl. On the other hand, if the second

term is dominant and ↵UV ⇠ 1, we find ⇤ .
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meMPl/e,
which is the one obtained in [18] from a slightly di↵erent
setup (see footnote 2). In either case, the typical size is

# If we assume the  boundedness for ,


   the dispersion relation reads .


   ※ Cancelation of the -pole implies Reggeization for :
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Gravitational Positivity Bounds [Tokuda-Aoki-Hirano ’20]

# Approximate positivity holds even in gravity theories:


 

      

※ The energy scale  in the approximate positivity 

   depends on details of Regge states required for UV completion of gravity.


   - In tree-level string theory, we have  [cf. Hamada-TN-Shiu ’18].


     cf. [Caron-Huot et al ’21] based on crossing symmetry in 5D and higher


   - It is an open problem to identify the scale  for loops, especially in 4D.


   - We will find that the scale  is crucial for phenomenological application.
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Quantum Gravity

Energy scale

1019 GeV

104 GeV LHC

≲ 1014 GeV inflation scale H

string scale Ms

Planck scale MPl

UV completable??

Where is the cutoff??

Standard Model ＋ BSM ＋ Einstein gravity
UV complete UV incomplete!


（a low-energy EFT）

Apply (improved) positivity bounds for this problem!



Improved Positivity Bounds



Improved Positivity Bounds

# In the previous section, we derived the dispersion relation


 .


# When the threshold energy  is below the cutoff scale ,


   it is convenient to define [Bellazini ’16, de Rham et al ’17]:


 , which is calculable within the EFT.

 ※  monotonically decreases as  increases


# Then, the dispersion relation implies


  .


 ※ If this improved positivity bound is violated at some UV scale ,


     the EFT breaks down and UV completion is required below .
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