

From High-Energy Astrophysics to Gravitational-Wave Astrophysics

Chin-Ping Hu

Department of Physics, National Changhua University of Education 2022 NCTS Annual Theory Meeting

Time-Domain Astronomy

- The Universe is dynamic time-domain astronomy is more and more important
- Many transient, non-stationary, and quasi-periodic phenomena are dicovered
- To describe the detailed frequency evolution and investigate underlying physics, advanced time-frequency analysis is needed
 - Fourier (with priori): Spectrogram, dynamic power spectrum, wavelet analysis
 - Trade-off between time resolution and frequency resolution
 - Adaptive (without priori): Hilbert-Huang transform

© Danielle Futselaar/artsource.nl

Frequency: Definition

• Given the period of a modulation as P, the frequnecy can be represented as

$$f = \frac{1}{P}$$

- This definition is too crude
- Does not apply to non-stationary processes
- Adding a moving window is able to trace the evolution of a non-stationary process in limited time/frequency resolution.

Instantaneous Frequency

Analog to the linear motion:

The velocity can be defined as

The instantaneous velocity can be defined as:

$$y = \frac{dx}{dt}$$

 $\omega = \frac{2\pi}{P}$

 $\omega = rac{d heta}{dt}$

v =

... constant speed, or mean velocity

Angular frequency in Fourier analysis:

The instantaneous angular frequency:

 θ is the (angular) phase function – how to define?

Instantaneous Frequency and Hilbert Transform

- For an oscillation signal x(t), the instantaneous frequency can be obtained by calculating the time derivative of the phase function.
- The phase function can be defined as

 $[x(\iota)]$

$$y(t) = rac{1}{\pi} \mathcal{P} \int_{-\infty}^{\infty} rac{x(t)}{t-t'} dt'$$

 $y(\iota)$

Hilbert transform, normalization is not needed but recommended to overcome the difficulties in Bedrosian theory

Direct quadrature, normalization is needed

• Some other approches are also available. Then we can calculate

 $heta(t) = an^{-1}\left(rac{y(t)}{x(t)}
ight)$ phase function $\omega(t) = rac{d heta(t)}{dt}$ instantaneous (angular) frequency

Hilbert Transform: Pure Sinusoidal Function

Hilbert Transform: Chirp Signal

It Looks Great, BUT...

Intrinsic Mode Function

- The instantaneous frequency is physically meaningful only if the input signal is an intrinsic mode function (IMF, Huang et al. <u>1998</u>)
 - The number of extrema and the number of zero crossings must be identical or differ by one
 - At any points in the series, the mean value of the upper envelope (dened by the local maxima) and the lower envelope (dened by the local minima) is zero.
- Thus, the empirical mode decomposition (EMD, Huang et al. <u>1998</u>) was proposed to decompose the signal x(t) into finite number of IMFs.
 - An iteration process to calculate the local mean curve of the upper/lower envelopes, and subtract the curve from the signal.
 - Working on the same process until the residual (trend) can no longer be decomposed.

Empirical Mode Decomposition

If no, work on the same process on c₁(t) until it fits the IMF criteria.

If $c_1(t)$ fit the IMF criteria, we treat $c_1(t)$ as the first IMF, and subtract it from the original signal. Then, we do the same operation to the residual to obtain the next IMF.

Empirical Mode Decomposition

Ensemble EMD (EEMD)

- By adding white noise and take the ensemble mean of IMFs, the mode mixing problem could be solved (Wu et al. <u>2009</u>).
 - The noise level should be chosen carefully – could be optimized by minimizing the orthogonality index
 - The summation of IMFs is no longer an IMF – a post-processing EMD is needed

EEMD Result

However

Problems of EEMD

- If the frequency range of a signal is larger than a factor of ~2, mode-mixing (or mode-splitting) is unavoidable.
 - The instantaneous frequency near the boundary that the signall across from one IMF to another would be unphysically modulated
 - Some (probably) unreal signals are introduced by the added/intrinsic noise.

New Approach: Stacking on the Time-Frequency Map

SHHT Result

Application 1: Superorbital Modulation of SMC X-1

SMC X-1

- High-mass X-ray binary with a supergiant companion
 - Roche-lobe overflow
 - X-ray pulsar with P = 0.7 s
 - Spin-up owing to accretion

 $^{\odot}$ Swinburne University of Technology

SMC X-1

- Orbital period = 3.9 days
 - \circ Eclipse: inclination ~ 60 70 degree
- Superorbital period varies between ~35 ~65 days
 - by precession of warped accretion disk
 - Radiation-driven warp spin-up rate and superorbital period should have connection to X-ray luminosity.
- X-ray luminosity ~ 5E38 erg/s super-Eddington
 - Local analog of pulsating ULXs

SMC X-1: Superorbital Excursion

HHT

SMC X-1: Spin Evolution

- Spin-up rate changes randomly with time
 - The spin-up accelerates monotonically 2 year before the onset of the 4th excursion, and decay back in ~1 year
 - A significant increase in the residual
 - An inside-out process connecting spin-up rate change and superorbital excursion?
 - Similar event is NOT seen in the 3rd excursion
 - A threshold? A coincidence?
 - The pulsed fraction seems increase during the superorbital excursion
 - Consistent with radiation driven model
 - Future detailed observation with phase-connected analysis is essential

Application 2: Gravitational Wave Signal From Coalscence and Core-Collapse Supernovae

Gravitaional Wave Signal: Binary Coalescence Events

- Gravitational wave signals from the coalescence of binary black holes are transient chirp signals
 - The frequency changes dramatically within a few cycles (e.g., from ~30 Hz to ~300 Hz with 6-7 cycles)
 - A factor of ~10
 - The amplitude also changes quickly.
 - They are difficult to be decomposed into a single IMF.
 - As long as EMD/EEMD is a dyadic filter.
 - Large noise could result in spurious frequency modulation

From GWTC-1 (Abbott+2019)

HHT analysis to Gravitational Wave data

Sakai+2017

Camp+2007

Kaneyama+2016

Result: GW150914 (H) with EMD

Result: GW150914 with EEMD (noise level = 0.2)

Result: GW150914 with Stacked HHT

Comparison

HHT

Smoothed using Gaussian Filter

Stacked HHT

Result: GW150914

- GW150914: A strongest gravitational signal.
 - The signal can be seen by eyes in the cleaned data.
 - The signal is decomposed into at least three IMFs
 - The frequency evolution can be traced very well with both the WWZ and the SHHT

GW 150914: Detailed Comparison

Result: GW170104 (L)

- GW170104: A relatively weak signal
 - The signal can still be seen marginally in decomposed IMFs
 - The time-frequency pattern can still be seen in the stacked Hilbert spectrum.

Result: GW170817 (H)

- However, the signal of GW170817 cannot be observed with this algorithm
 - Probably the instantaneous signal to noise ratio is too low?
 - Detailed mathematical proof and statistical tests are under developing (Yen et al. in prep)

Result: Core-Collapse Supernovae

- Detection of GW signals from a nearby CCSN will be the milestone of next-generation GW observatory
 - The cross component seen from the equatorial plane with 40 solar mass progenitor without rotation
 - The signal could be much more complicated
 - The stacked HHT would be helpfin in recognizing different components of the GW signal from a CCSN.

Result: Slow Rotators and Fast Rotators

Future Work: EMD-CNN Model for GW Detection

- The IMFs effectively forms a 2-D map, and the GW signal draws a special pattern on the map
 - Good for convolutional neural network: image classification
 - Precise time-frequency information is not required

Summary

- The HHT is a novel technique for time-frequency analysis although the mode-mixing problem is severe for signals with huge frequency variability.
 - We propose a method that could minimize the spurious signals by stacking the time-frequency map instead of taking the ensemble mean of the IMFs.
- We successfully applied this algorithm on X-ray light curve of SMC X-1 to trace the evolution of the superorbital modulation
 - We observed a clear time coincidence between the superorbital excursion and spin-up acceleration.
- We successfully applied this algorithm on GWTC-1 data and found that most of their frequency evolution can be well tracked.
- The HHT is an ideal tool for further investigating the time-frequency properties of a signal
 - Powerful in describing the detailed structures in CCSN events