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- Introduction

Let us consider linear gravitational
perturbation around black holes(BHs)
There exist specific modes:

Quasi Normal Modes (QNMs)

Similar to specific sounds
for a drum

If we “beat” BHs, and
*hear” QNMs, then we can
obtain information of BHs




Introduction: master eg

In general, it is difficult to study linear
perturbation of BHs 9w = 92 + €hu

Linear gravitational perturbation on a
highly symmetric BH usually reduces to
a single master equation
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- Introduction: master eqg

e.g.) Schwarzschild case (odd mode):
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- Introduction: master eqg
[ 02 02

| V(w)} =0

ot2  Ox?

®(t,x) = e “iP(z)

d2
[ | V} b = 2P
da?

same form as
1dim (time-independent) Schrodinger eq
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== Introduction: QNM

d 2
— 3 FV]|P =wd

Quasinormal mode (QNM) :

solution of the master eq

s.t. purelyoutgoingat € =00 & — e
purely ingoingat = — —oco & — e™®

[_0_2 L9 V(w)] b — b(t,x) = e i dD(x)

(i:) wzoo Ae—iw(t—w) + W)
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Introduction: QNM

d 2
—dcc2 FV|® = wP

Quasinormal mode (QNM) :

solution of the master eq

s.t. purelyoutgoingat € =00 & — e
purely ingoingat =z — —co & — e ™?

Find a sol with above boundary condition

This is an eigenvalue problem

Similar to quantum mechanics,
only special w admit this type of soluti

on
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- Introduction: QNM

e.g.) Schwarzschild case
(£ = 2 fundamental mode)
0.37365... — i0.0885...
M

WQNM —
= w IS complex

-damped oscillation (@(t,z) = e *“*®(z) )
- Infinite number of QNM w exist
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== Introduction: QNM

How to calculate QNM w ?

We need to solve the eigen value problem
for the master eq

d2
[ T2 IV}@:wzi
X

We can calculate QNM «w numerically
Leaver’'s method - Direct integration

-WKB approximation
etc... 9/28



Introduction: QNM

GWs emitted from the last stage of binary
BH coalescence IS weII approxmated by

QNMs

| — Numerical relativity i
m Reconstructed (template)
| |

[PRL 116, 061102 (2016)]
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Introduction: motivation

In GR, QNM w is determined only from
the mass and spin of the final state BH

checking f = test for GR
We want to test GR by (future) observation

We also want to put a constraint on
gravity theories
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 Introduction
-Parametrized QNM

- Applications
-Recent development
-Summary & discussions
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== QNM for non-GR

We want to discuss QNMs for
non-GR gravity theories

usual approach:
fix a specific gravity theory
— find a black hole solution
— derive master eq and find QNMs

We want to discuss QNMs for many
gravity theories systematic:ally13 /28



== QNM for non-GR

We assume that the theory is almost GR,
l.e., (vacuum) GR + small correction

We focus on spherically sym (static) case

We expect that the master equation is
RW or Zerilli eq + small correction
d2

dx?

FVar + 0V | & = w?®

(GR)

wanm =wonm 0w 1408



 Parametrized potential
Schwarzschild case + correction term

d [ d® .
— — |+ [w=V]® =0 f=1— —
fd?“ (f dr ) | | r
V=Vi+4+0oVy
rv _p (D _SrEy OATZT + BXZrir? + AZ(A+ 2)r° + Or,
-=7 ( 72 B r3 ) T y 7“3()\7’ + 3TH)2
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== Parameterized QNM formalism

[V. Cardoso, A. Maselli, MK, E. Berti, C. F. B. Macedo, R. McManus, 2019]

Expanding w as a series of a;

+

wQNM_wGR+za'

—I—Za

7,k=0

J

"oy, eg,k -+ (’)(a3)

ey €5y . model independent coefficients
( a5 Independent)

We can calculate €, € numerically
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J

0 0.24725+0.0926431
1 0.15985-+0.0182081
2 0.096632-0.00241551
3
4

0.058491-0.00371791
0.036679-0.000438701
10 0.0036853+0.00652441

for ¢ =2 fundamental mode
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Application 1 (non-GR)

EFT extension of GR (kind of modified gravity)

(V. Cardoso, M. Kimura, A. Maselli, and L. Senatore, 2018)

d2W_
o Flw? — F(Vo+6V_)|P_=0
e, 10
— 18(£+2)(£+1)(£ — Dears,

710

for £ =2
WQNM = Wo + 19€1p [61_0 = 0.0036853 + i0.0065244j

0.796025 4+ 1.409272
= wp+ i ez (0=2)
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Application 2: GW QNM for slow rot Kerr

[IMK and Y.Hatsuda 2020]

Wave eq for Kerr case can be written
in the Schrodinger form for small spin a

Mg = (0.3736716844180418 — 0.08896231568893577)

ma

M
+ ((0.03591312868219 + 0.006381789250481)

+ (0.0628830795083 + 0.0009979348536%)

2
+ (0.00895679029 — 0.000291221292')m2) (%) +0(d®),

This agrees very well with numerical
results for small spin parametera 19/28



== QNM for non-GR

Our formalism is a tool for calculating
QNMs if a specific model is fixed

We also want to put constraint on «;
from observational data

+ =+
WoNM = WGR T Z & ;+ Z aiaf: ;Ijk +O(a?)

7J=0 j,k=0

[cf Volkel, Franchini, Barausse, Berti arXiv:2209.10564]

Constraints on master equations
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= Recursion relations for e;

| found recursion relations

among e; with different j (= 0)
[MK, PRD 101, 064031 (2020)]

For e, :

—4(j — V)rEr(wo )?e; —3(—4(€+1) + (j —1)(F +1))ej

+(25+1)(=6-2£(6+1)+(7—1)(1+2))e; 13— (1—3)(G+1)(G+5)e; ., =0

(Derivation will be shown later)

We can calculate €; only from €o»€e1,€2,€7
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We can calculate €; only from €g,e1,€ez,€e7

2=+ 1)+ 2)(02 + 0 — 1)r2 (wy )26_ - 12(02 + € — 2)r3(wy )? -

’ (C=12C0+1)2(0+2)2 +36rF(w )2 7 (0= 120+ 1)2(0 +2)* + 367 (wy )2
4 2

ey = —gzralwo)eq + (44 L+ ey,
1 1

er = _E(3+£+€2) ir(wo )’eq + + 12+ (0 + 1)(2+ 0+ €%))es,

. 2 _ L D+ 1)2+8) —4(6 + 5r(wg)?) -

S (34t 2 e

ef) 35( + £+ ) ( U) 60 + 35(€2+€_2) 65

We can also use these recursion relations
to estimate the numerical calculation error
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= Ambiguity of potential

 da? _ ~ f coord
GR case, spectra are known

Choosing new master variable ¥ as
X =0(o)
Y =0(a)
Derivatives of & contains higher derivatives

but they can be reduced to lower order
do . Yd2<1>
der da?

— e e _Y(wz —VGR)(I) 23/28

dd
V=(14+X)P+Y—
dx




= Ambiguity of potential

dx?

d>? dP
£r

After some calculations,
d* U dW¥
dr2 dx

— 0 — eq is Schrodinger form
(this condition is a differential eq for X,Y")

- (w? — Vgr — 0V)¥ =0

Spectra are same as GR case,
but correction terms exist in V
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== Ambiqguity of potential

Spectra are GR, but correction terms exist

d? W 5
T2 | (w —VGR—(SV)\IJ:O

because spectra are same as GR
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== Recursion relation for €;

Change of master variable for GR case
leads to correction terms in Vv

GR
WQNM = w((;le\ZI T E aje;
j

=0
We can check the accuracy of e;

Our current numerical results for e;
satisfy this ©(1072°) 26/28



= Multiple degrees of freedom

In modified gravity theories, sometimes,
multiple physical degrees of freedoms

are coupled
In many cases, we need to consider

master eq with Schrodinger type
S )
| dx? ]
where the potential is n x n matrix,
$ has » components
Our formalism can be extended to
coupled system [PRD 100, 044061 (2019)]

LV ® = w?®




== Summary and discussion

We propose a quick method to
estimate QNM w for a class of

parameterized effective potential

-\We want to put a constraint on o
from future QNM observation

-extension to coupled system

QNM is an entrance of gravitational wave
research

-knowledge of quantum mechanics is
useful for QNM study 28/28
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