Recent progress on new light boson search with isotope shifts

2023/12/15 @ NCTS Annual Theory Meeting

YAMAMOTO, Yasuhiro (NCTS) Collaboration with M. Tanaka (Osaka U) and Quantum Optics group (Kyoto U)

New discovery and photon

Photon : massless vector boson without self interaction

Special and general relativity

Quantum mechanics

- > Quantization
 Black body radiation and photoelectric effect
- > Local causality Bell's inequality violation
- > Quantum field theory Anomalous magnetic moments

Precision atomic spectroscopy

Measurement of transition energy with laser

> Precise determination of laser frequency

Yb⁺: 642 121 496 772 645.12 Hz (3.2x10⁻¹⁸)

1602.03908: N.Huntemann, et al.

> Rapidly developed with the interest to clock, QC, etc.

1. Measuring absolute frequencies is difficult

- 2. We cannot extract new physics contribution there
- > Spectra shifts among isotopes

Contents

- 1. Introduction
- 2. Isotope shift

- 3. Generalized and dual King relations
- 4. King relations and the Standard Model contributions
- 5. Constraints on new physics

Isotope shifts and King relation

Transitions follow a linear relation

1963, W.H. King

Isotope shifts and King relation

Transitions follow a linear relation

1963, W.H. King

Violation and generalization of King relation

Higher order contributions also violate the relation

FS22: 2nd order perturbation $\propto [\delta \langle r^2 \rangle]^2$ 1709.00600: V.V.Flambaum, et al FS4 : Next leading order moment $\propto \delta \langle r^4 \rangle$ 1710.11443: K.Mikami, M.Tanaka, YY

The King relation is equation to write nuclear factors

$$\delta \vec{\nu} = \begin{pmatrix} \vdots & \vdots \\ K_i & F_i & \cdots \\ \vdots & \vdots \end{pmatrix} \begin{pmatrix} \delta \mu \\ \delta \langle r^2 \rangle \\ \vdots \end{pmatrix}$$

 $> \delta \mu = f_1 \delta \nu_1 + f_2 \delta \nu_2 + \cdots$

Early experimental results with Yb

Non linearity is observed but excluded

2.25

Recent experimental results

5 transitions are measured with Yb 2201.03578: J. Hur, et al

Ca gives us similar limit on new physics

(Higher order contributions have not been observed yet)

- 1. Combine all transition data
 - > The generalized King relation can do it> Use dual King relation
- 2. Extract more information from data
 - > Test the origins of the higher order sources
 - > Constrain nuclear isotope dependence

Combined analysis

Including more transitions are trivial

$$\delta \vec{\nu} = \begin{pmatrix} \vdots & \vdots \\ K_i & F_i & \cdots \\ \vdots & \vdots \end{pmatrix} \begin{pmatrix} \delta \mu \\ \delta \langle r^2 \rangle \\ \vdots \end{pmatrix}$$
 Add as an additional nuclear factor
$$0 = K_{n+1} \delta \mu + F_{n+1} \delta \langle r^2 \rangle + \cdots - \delta \nu_{n+1}$$

Linear relations to be fit

$$\delta\mu = f_1\delta\nu_1 + f_2\delta\nu_2 + \cdots$$
$$\delta\nu_{n+1} = f'_1\delta\nu_1 + f'_2\delta\nu_2 + \cdots$$

Combined analysis

Including more transitions are trivial

$$\delta \vec{\nu} = \begin{pmatrix} \vdots & \vdots \\ K_i & F_i & \cdots \\ \vdots & \vdots \end{pmatrix} \begin{pmatrix} \delta \mu \\ \delta \langle r^2 \rangle \\ \vdots \end{pmatrix}$$
 Add as an additional nuclear factor
$$0 = K_{n+1} \delta \mu + F_{n+1} \delta \langle r^2 \rangle + \cdots - \delta \nu_{n+1}$$

Linear relations to be fit

$$\delta \mu = f_1 \delta \nu_1 + f_2 \delta \nu_2 + \cdots$$
$$\delta \mu = f'_n \delta \nu_n + f'_2 \delta \nu_2 + \cdots$$

Read out results

Observed higher orders cannot be new physics

Dual King relation

Isotope shift does not care electronic/nuclear factors

$$\delta\nu_i^{A'A} = K_i \delta\mu^{A'A} + F_i \delta\langle r^2 \rangle^{A'A}$$

Different isotope pairs follow another linear relation

$$\delta\nu^{A_3A} = a_1\delta\nu^{A_1A} + a_2\delta\nu^{A_2A}$$

New transitions follow the same relation.

It provides the same fit result with the original one

2209.14126; YY

Dual King relation

Isotope shift does not care electronic/nuclear factors

$$\delta\nu_i^{A'A} = K_i \delta\mu^{A'A} + F_i \delta\langle r^2 \rangle^{A'A}$$

Different isotope pairs follow another linear relation

$$\delta\nu^{A_3A} = a_1\delta\nu^{A_1A} + a_2\delta\nu^{A_2A}$$

New transitions follow the same relation.

It provides the same fit result with the original one

2209.14126; YY

Nuclear isotope dependence

Ratios of nuclear factors are constrained by isotope shifts

$$\delta\nu^{A_3A} = a_1\delta\nu^{A_1A} + a_2\delta\nu^{A_2A}$$

Coefficient analysis

Available isotope pairs of Yb are 4

- > At least 2 higher order isotope shifts are observed
 - > New physics is not included there
 - > More fit parameters than data

Cancel a source with other transitions

Are electronic factors reliable? > No!

FS22	D5	D3	F7	P0	D2	(/D5)	D3	F7	P0	D2
AMBiT	81.91	83.25	-201.1	54.28	75.32		1.016	-2.455	0.6623	0.9196
GRASP	42.57	43.20	-112.3				1.015	-2.639		
RPA	28.53	28.53			23.34		1.000			0.8181
							Consi	stent	in 109	% leve

		F	-S22		FS4			
(/D5)	D3	F7	P0	D2	D3	F7	P0	D2
FS22+?	1.013	-2.200	0.6262	0.8197				
FS4 +?					1.078	-2.523	0.5897	0.7879
FS22+FS4	1.061	-2.335	0.6574	0.8123	1.080	-2.526	0.5894	0.7949
FS22+FS4+?	0.9989	-2.471	0.6657	0.9080	1.060	-2.593	0.5929	0.8191

Are electronic factors reliable? > No!

FS22	D5	D3	F7	P0	D2	(/D5)	D3	F7	P0	D2
AMBiT	81.91	83.25	-201.1	54.28	75.32		1.016	-2.455	0.6623	0.9196
GRASP	42.57	43.20	-112.3				1.015	-2.639		
RPA	28.53	28.53			23.34		1.000			0.8181
							Consi	stent	in 109	% leve

		F	-S22		FS4				
(/D5)	D3	F7	P0	D2	D3	F7	P0	D2	
FS22+?	1.013	-2.200	0.6262	0.8197					
FS4 +?					1.078	-2.523	0.5897	0.7879	
FS22+FS4	1.061	-2.335	0.6574	0.8123	1.080	-2.526	0.5894	0.7949	
FS22+FS4+?	0.9989	-2.471	0.6657	0.9080	1.060	-2.593	0.5929	0.8191	

Are electronic factors reliable? > No!

FS22	D5	D3	F7	P0	D2	(/D5)	D3	F7	P0	D2
AMBiT	81.91	83.25	-201.1	54.28	75.32		1.016	-2.455	0.6623	0.9196
GRASP	42.57	43.20	-112.3				1.015	-2.639		
RPA	28.53	28.53			23.34		1.000			0.8181
						(Consi	stent	in 109	% leve

		F	-S22		FS4				
(/D5)	D3	F7	P0	D2	D3	F7	P0	D2	
FS22+?	1.013	-2.200	0.6262	0.8197					
FS4 +?					1.078	-2.523	0.5897	0.7879	
FS22+FS4	1.061	-2.335	0.6574	0.8123	1.080	-2.526	0.5894	0.7949	
FS22+FS4+?	0.9989	-2.471	0.6657	0.9080	1.060	-2.593	0.5929	0.8191	

Are electronic factors reliable? > No!

FS22	D5	D3	F7	P0	D2	(/D5)	D3	F7	P0	D2
AMBiT	81.91	83.25	-201.1	54.28	75.32		1.016	-2.455	0.6623	0.9196
GRASP	42.57	43.20	-112.3				1.015	-2.639		
RPA	28.53	28.53			23.34		1.000			0.8181
						(Consi	stent	in 109	% leve

		F	-S22		FS4			
(/D5)	D3	F7	P0	D2	D3	F7	P0	D2
FS22+?	1.013	-2.200	0.6262	0.8197				
FS4 +?					1.078	-2.523	0.5897	0.7879
FS22+FS4	1.061	-2.335	0.6574	0.8123	1.080	-2.526	0.5894	0.7949
FS22+FS4+?	0.9989	-2.471	0.6657	0.9080	1.060	-2.593	0.5929	0.8191

New physics bonds

Subtract higher orders and constrain new physics

c.f., latest bound with Ca is the same level

Conclusion

Theoretical understanding of isotope shift is required

- > Generalized King relation to study many data
 - > Electronic factor calculations should be important
- > Dual King relation
 - > Strong constraints on nuclear factors

