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WIMP dark matter direct detection 
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Direct detection: current status
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Direct detection: current status
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Migdal 1939
Ibe et. al. 2017
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Migdal effect also studied in 

• Molecules (Blanco+ ‘22)

• Semiconductors (e.g. Knapen+ ’20; Liang+ ‘22)

Electronic ionisation due to a nuclear recoil
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Migdal effect

Provides world-leading direct detection limit for masses below 1 GeV

PandaX-4T (2023)
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Migdal ionisation probability PC, Dolan, McCabe, Quiney
Phys. Rev. D 2023 
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Low recoil energy 
(dark matter searches)

New precision theory valid across all recoil energies
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Migdal ionisation probability PC, Dolan, McCabe, Quiney
Phys. Rev. D 2023 

single ionisation

double ionisation

atomic recoil

excitation ionisation 
+ excitation

Ionisation electron energy (keV)

D
iff

er
en

ti
al

 io
n

is
at

io
n

 
p

ro
b

ab
ili

ty

Low recoil energy 
(dark matter searches)

New precision theory valid across all recoil energies

High recoil energies



Peter Cox - University of Melbourne

Calibrating the Migdal effect – neutron scattering

• Important to calibrate Migdal effect for DM searches

• Several experiments underway to observe Migdal effect
in neutron scattering (MIGDAL, LZ, LLNL)

PC, Dolan, McCabe, Quiney ‘23



HydroX: proposal to dope liquid Xe experiments with hydrogen

Better kinematics for light DM scattering

Target   :  hydrogen (few %)
“Sensor”: liquid xenon

Peter Cox - University of Melbourne

Hydrogen doping

Figure: HydroX / LZ collaboration



HydroX: proposal to dope liquid Xe experiments with hydrogen

Better kinematics for light DM scattering

Target   :  hydrogen (few %)
“Sensor”: liquid xenon

R&D with small-scale TPCs ongoing
  (HydroX collaboration)
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Hydrogen doping

Figure: HydroX collaboration
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Bell, PC, Dolan, Newstead, Ritter (2023)H -doping & Migdal effect
Maximise low mass reach of Xe experiments – especially for SD scattering

Spin-independent Spin-dependent (proton)

2
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Sub-MeV direct detection: collective excitations
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Sub-MeV direct detection: collective excitations
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Sub-MeV mass DM interacts directly with collective excitations 
       (e.g. phonons)

How to detect low energy phonons? phononphonon
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Dark matter detection with superfluid  He4

Promising target material is superfluid helium-4 
Figure: Matchev et. al ‘21

Long-lived collective excitations (phonons/rotons)
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Dark matter detection with superfluid  He4

Upcoming experiments using superfluid helium-4 target:  HeRALD, DELight

DELight Collaboration

Figure: Herald Collaboration
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Superfluid optomechanics for dark matter

Figure: Kashkanova+ ‘16
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Superfluid optomechanical cavities as single phonon detectors

Baker, Bowen, PC, Dolan, Goryachev, Harris
arXiv:2306.09726
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Superfluid optomechanics for dark matter

Figure: Kashkanova+ ‘16
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Superfluid optomechanical cavities as single phonon detectors

Interaction between acoustic (density) 
and optical modes

Baker, Bowen, PC, Dolan, Goryachev, Harris
arXiv:2306.09726

photons phonon
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Superfluid optomechanics for dark matter

Figure: Kashkanova+ ‘16
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Superfluid optomechanical cavities as single phonon detectors
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Baker, Bowen, PC, Dolan, Goryachev, Harris
arXiv:2306.09726

Optomechanical interaction converts
~µeV phonons into detectable ~eV photons 
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Superfluid optomechanics for dark matter

Figure: Kashkanova+ ‘16

optical 

fibre

superfluid ⁴He filled optical cavity

Superfluid optomechanical cavities as single phonon detectors

Interaction between acoustic (density) 
and optical modes

pump 
laser

Baker, Bowen, PC, Dolan, Goryachev, Harris
arXiv:2306.09726

Optomechanical interaction converts
~µeV phonons into detectable ~eV photons 

Optomechanical systems have demonstrated µeV phonon counting (e.g. Patil et. al. ’22) 
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Narrow-band detection

Superfluid optomechanical systems as dark matter detectors:

✓ exceptional low-energy sensitivity (~µeV)

narrow-band detector (single phonon energy)

 Very low dark matter scattering rate due to restricted phase space
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Narrow-band detection & phonon lasing

Superfluid optomechanical systems as dark matter detectors:

✓ exceptional low-energy sensitivity (~µeV)

narrow-band detector (single phonon energy)

 Very low dark matter scattering rate due to restricted phase space

Solution: Phonon lasing
 
•  Stimulated scattering rate 

(proportional to phonon occupation number)

• Achieved via optomechanical interaction detected
phonon

pumped 
phonon
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Dark matter – phonon scattering

resonantly 
enhanced

Low-energy phonons in superfluid described by effective field theory (EFT)

• Phonons are Nambu-Goldstone bosons of U(1) symmetry breaking

Two contributions to stimulated scattering process:

3-phonon interaction
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Superfluid optomechanics for dark matter

1

excited phonon
(higher energy)

pumped phonon
(lower-energy,

high occupation)

Scattering
DM excites ~µeV phonon in superfluid
(stimulated scattering process with phonon lasing) 



Conversion & amplification
phonon interacts with pump laser, 
producing higher energy photon
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Superfluid optomechanics for dark matter
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Conversion & amplification
phonon interacts with pump laser, 
producing higher energy photon
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Superfluid optomechanics for dark matter

1

pumped phonon
(lower-energy,

high occupation)

Scattering
DM excites ~µeV phonon in superfluid
(stimulated scattering process with phonon lasing) 

2

phonon

pump laser 

Detection
photon detected by single photon 
detector (SNSPD)

3

excited phonon
(higher energy)
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ODIN: Optomechanical Dark-matter INstrument

Main detector backgrounds:

• Thermal phonons

(10−5 Hz at T = 4mK and Q = 1010)

• SNSPD dark counts

(~6 × 10−6 Hz)

• Incomplete filtering of pump lasers

(especially 532nm, supressed with filter cavities)

Expected background rate ~1 event/day
cavity dimensions ~ 30cm x 0.7mm
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ODIN: Projected Sensitivity

Initial “baseline” scenario 

“Improved” scenario

Sensitivity determined by:

• Phonon occupation 

• Acoustic Q-factor

• Intrinsic background rate

Sensitive to keV-scale dark matter
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Summary

Direct detection is moving into the sub-GeV regime

Migdal effect
• Extending reach of existing experiments into sub-GeV regime

• Ongoing effort to calibrate in neutron scattering

Superfluid He
• Promising target for sub-MeV searches

• Optomechanical single phonon detectors: convert ~µeV phonons to ~eV photons

• ODIN will be sensitive to keV mass dark matter
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