

Probing QCD phase transitions with neutrinos from neutron-star mergers

Jane SiNan Long

MSSL, University College London

Supervisors: Kinwah Wu, Silvia Zane, Ziri Younsi

Outline

- 1. What are QCD phase transitions?
- 2. What are neutron-star mergers?
- 3. How can QCD phase transitions affect neutrino emissions?
- 4. What are the neutrino signatures from remnants of neutron-star mergers
- 5. Summary

1. QCD phase transitions

QCD phase transition

hadrons

quarks

Nuclear saturation density ~2 $\times 10^{15} g \ cm^{-3}$

Temperature ~ 10^{12} K

Deconfinement

QCD phase diagram

Nuclear saturation density ~2 $\times 10^{15} g \ cm^{-3}$

Models for QCD – some examples

Hadron phase:

NLWM (non-linear Walecka model)

QMC model

Unparied quark phase:

NJL (Nambu-Jona Lasinio) model MIT Bag model * $\mathcal{L} = \left[\frac{i}{2} \left(\bar{\psi} \gamma^{\mu} \partial_{\mu} \psi - \left(\partial_{\mu} \bar{\psi} \right) \gamma^{\mu} \psi \right) - B \right] \theta_{v}(x) - \frac{1}{2} \bar{\psi} \psi \Delta_{s}$...

CFL (color flavored locked) phase:

Perturbation theory

2. Neutron-star mergers as laboratory for QCD phase transition

Neutron star — neutron star merger

Credit: NASA's Goddard Space Flight Center/CI Lab

GW signals from NS-NS merger

Missing physics in the ring-down phase

Lukas R. Weih (2019)

3.Neutrinos from QCD phase transition

Previous neutrino detection

- imply QCD phase transition

Ben (2011)

Neutrino Reactions

A. Perego (2014)

Reaction

$$e^{-} + p \leftrightarrow n + \nu_{e}$$

$$e^{+} + n \leftrightarrow p + \bar{\nu}_{e}$$

$$e^{-} + (A, Z) \leftrightarrow \nu_{e} + (A, Z - 1)$$

$$N + \nu \leftrightarrow N + \nu$$

$$(A, Z) + \nu \leftrightarrow (A, Z) + \nu$$

$$e^{+} + e^{-} \leftrightarrow \nu + \bar{\nu}$$

$$N + N \leftrightarrow N + N + \nu + \bar{\nu}$$

- (i) neutrino nucleon scattering: $\nu_i + \{n, p\} \rightarrow \nu_i + \{n, p\}$
 - (ii) neutrino emission:

 $p + e^- \rightarrow \nu_e + n$ $n + e^+ \rightarrow \bar{\nu}_e + p$

(iii) neutrino absorption: $\nu_{e} + n \rightarrow p + e^{-}$ $\bar{\nu}_{e} + p \rightarrow n + e^{+}$

Neutrinos from QCD phase transition

$L_{ m u,ns} \sim$	$\Delta E_{\rm ns}$	\approx	$\frac{c}{-} \Lambda E B^{-2} \lambda$	
	$t_{\rm diff,ns}$		$3^{\Delta L_{\rm ns} r_{\rm ns}}$ Ascatter	

phase	process	λ (T=5 MeV)	λ (T=30 MeV)
Nuclear Matter	$\nu n \rightarrow \nu n$	200 m	$1 \mathrm{~cm}$
	$\nu_e n ightarrow e^- p$	2 m	$4 \mathrm{cm}$
Unpaired Quarks	u q ightarrow u q	350 m	1.6 m
	$ u_e d ightarrow e^- u$	120 m	4 m
CFL	λ_{3B}	100 m	$70~{ m cm}$
	$ u\phi ightarrow u\phi$	$\geq 10 \text{ km}$	4 m

S. Reddy (2003)

 $\lambda_{3\mathrm{B}} \sim \nu H
ightarrow
u H$ *H*: CFL Goldstone boson

4. Neutrino emission from remnant of neutron-star mergers

Neutrino emission — method

Neutrino transport:

- leakage-based scheme
- neutrino absorption

$$L_{\nu,\text{disk}} \sim 0.5 \frac{\Delta E_{\text{grav}}}{t_{\text{disk}}}$$
$$L_{\nu,\text{ns}} \sim \frac{\Delta E_{\text{ns}}}{t_{\text{diff,ns}}} \approx \frac{c}{3} \Delta E_{\text{ns}} R_{\text{ns}}^{-2} \lambda_{\text{scatter}}$$

Neutrino emission — affect by NS

Neutrino emission — affect by disk

Ejecta mass

Thermal energy of disk

Thermal vs gravity 17

Next step: treatment of neutrino transport

Radiative transport:absorptionemission $\left(\frac{1}{c}\frac{\partial}{\partial t} + \hat{\mathbf{\Omega}} \cdot \nabla\right) I_{\nu}(\hat{\mathbf{\Omega}}) = -\kappa_{\nu}(\hat{\mathbf{\Omega}})I_{\nu}(\hat{\mathbf{\Omega}}) + j_{\nu}(\hat{\mathbf{\Omega}})$ scattering $+ \iint d\Omega' d\nu' \sigma(\nu, \hat{\mathbf{\Omega}}; \nu', \hat{\mathbf{\Omega}}') I_{\nu'}(\hat{\mathbf{\Omega}}')$

General relativistic radiative transport:

$$\frac{\mathrm{d}\mathcal{I}(x^{\beta},k^{\beta})}{\mathrm{d}\xi} = -k^{\alpha}u_{\alpha} \int_{\xi} \left[-\frac{x_{0}(x^{\beta},k^{\beta})\mathcal{I}(x^{\beta},k^{\beta}) + \eta_{0}(x^{\beta},k^{\beta})}{\sum_{k=1}^{k} \int \mathrm{d}^{4}k'^{\beta}\sigma(x^{\beta};k^{\beta},k'^{\beta})\mathcal{I}(x^{\beta},k^{\beta}')} \right]$$

Next step: treatment of neutrino transport

General relativistic radiative transport:

Methods	Pros	Cons	Example (Ref)
Leakage schemes	Easy to calculate	Easy to broke	ASL scheme Perego et al. (2016)
Moments-based radiation transport	Acceptable accuracy	Expensive	Grey moment scheme Foucart et al. 2016b
Monte-Carlo radiation transport	Most accurate	Most expensive	Foucart et al. 2020

5. Summary

Summary

- 1. QCD phase transition is a fundamental particle property that can be probe by celestial objects.
- 2. Remnant of neutron star merger is highly dependent on nuclear physics.
- 3. Neutrino as one of the multi-messengers can be a helpful tool to study the remnant of Neutron-star mergers, especially when QCD phase transition happens.

Back-up slides

Neutrino emission — QCD phase transition

Density profiles of various neutron-star mergers

Density profiles before 10 ms are useful indicator of QCD phase transition

Lukas R. Weih (2019)

Standard model of particles

Image source: Wikimedia Commons

NS-NS merger

NS-BH merger

Remnant: massive NS or BH

Remnant: BH

GW signal — BH coalescence vs NS merger

GRAVITATIONAL-WAVE TRANSIENT CATALOG-1

WAVELET (UNMODELED)

LIGO-VIRGO DATA: HTTPS://DOI.ORG/10.7935/82H3-HH23

Signals from NS-NS merger

Makhathini et al. (2020)

Signals from NS-NS merger GW170817

What do we get?

- Short gamma-ray burst
- Gravitational waves
- Kilonova (afterglow)

[Credit: LIGO, Virgo, Fermi, Swope, DLT40]

Previous neutrino detection

Supernova

Neutrino oscillation

The expected number of events with neutrino oscillation The observed number of events in Super-Kamiokande

Nakahata M (2007)

[Credit: Super-K]

Neutrinos from QCD phase transition

burst of neutrino emissions

Core-collapse supernova

phase transition

 \rightarrow second shock reach neutrino sphere

 \rightarrow second neutrino burst

Neutrino instruments

Kamiokande (1983-1996)

- Atmospheric and solar neutrino "anomaly"
- Supernova 1987A

Birth of neutrino astrophysics

Super-Kamiokande (1996 - ongoing)

- · Proton decay: world best-limit
- Neutrino oscillation (atm/solar/LBL)
 All mixing angles and Δm²s
 - Discovery of neutrino oscillations

Hyper-Kamiokande (start operation in 2027)

- · Extended search for proton decay
- Precision measurement of neutrino oscillation including CPV and MO
- · Neutrino astrophysics

Explore new physics

Details about Hyper-K instrument

UCL

How does Hyper-K works?

Observe the Cherenkov Ring from charged particles

 Optical "Sonic Boom" from faster than light (in water) particles

>99% µ/e separation

Length -> momentum

Details about Hyper-K instrument

	KAM	SK	HK-3TankLD	HK-1TankHD
Depth	1,000 m	1,000 m	$650 \mathrm{~m}$	$650 \mathrm{~m}$
Dimensions of water tank				
diameter	15.6 m ϕ	$39~{ m m}~\phi$	74 m ϕ	74 m ϕ
height	16 m	42 m	60 m	60 m
Total volume	$4.5 \mathrm{kton}$	$50 \mathrm{kton}$	$774 \mathrm{kton}$	$258 \mathrm{\ kton}$
Fiducial volume	$0.68 \mathrm{kton}$	$22.5 \mathrm{kton}$	$560 { m kton}$	$187 \mathrm{kton}$
Outer detector thickness	\sim 1.5 m	$\sim 2 { m m}$	$1\sim 2~{ m m}$ $1\sim 2~{ m m}$	
Number of PMTs				
inner detector (ID)	948 (50 cm ϕ)	11,129 (50 cm ϕ)	40,000 (50 cm ϕ)	40,000 (50 cm ϕ)
outer detector (OD)	123 (50 cm ϕ)	$1,885~(20~{ m cm}~\phi)$	20,000 (20 cm ϕ)	6,700 (20 cm ϕ)
Photo-sensitive coverage	20%	40%	13%	40%
Single-photon detection	unknown	12%	24%	24%
efficiency of ID PMT				
Single-photon timing	~ 4 nsec	2-3 nsec	1 nsec	1 nsec
resolution of ID PMT	L			

Hyper-Kamiokande Design Report (2018)

Detectability of Hyper-K in general

Detectability of Hyper-K for NS merger

HK: ~0.37Mt

Number of events to be emitted before first HK detection

UCL

1. Neutrino emission

a. Massive NS

2. Neutrino absorptoion

puff matter

b. Accretion disk

a. Absorbed by disk ->

Neutrino flux from NS-NS postmerger disk

A. Perego (2014)

- - 37

Neutrinos from NS merger

1. NSNS-NS

2. NSNS-BH

- Delayed collapse or long-standing NS
- M_t > 2.8M⊙

- Prompt collapse
- $M_t \lesssim 2.8 M_{\odot}$

3. NSBH

- With mass ejecta
- M_BH $\lesssim 5M \odot$

Neutrino flux from postmerger disk

NS-NS

- Leakage scheme: $Y_e \sim 0.1$
- Moment transport: $Y_e \sim 0.15 0.2$

NS-BH

• Neutrino reabsorption: $Y_e \sim 0.2 - 0.4$

Foucart et al. (2016)

Foucart et al. (2015)

Neutrino emissions from NS-X merger

1. NSNS-NS

2. NSNS-BH

3. NSBH

Neutrino energy hierarchy $\epsilon_{v_x} > \epsilon_{\bar{v}_e} > \epsilon_{v_e}$

E = 4.62MeV; 10.63MeV; 16:22MeV; 24.65MeV; 56.96MeV

Motivations

- Why neutrinos?
- What happened after neutron star merge?
- What can we learn from the dense matter in the remnant disk?
- Can we tell the difference between NS-NS and NS-BH merge via neutrino alone?

Why neutrinos?

- Weak interaction -MeV
- Low absorption rate
- What can neutrinos tell us?

Calculations:

- 1. BB from disk vs disk+NS vs extended disk from NSBH
- 2. Heating mechanisms: shock vs B-field driven turbulence vs QCD phase transition
- 3. Transport scheme: leakage vs moment transport

Estimate the number of NS-X neutrino detection

Neutrino cooling timescale

Predict the GW lagging time

UCI

47

Pars with disk

Same mass -> different EOS -> different Lv

Pars with disk

QCD Lagrangian – an example

The QCD interation is described by a Lagrangian

Full QCD Lagrangian

$$\mathcal{L}_{QCD}^{0} = \overline{q} i \gamma^{\mu} \left(\partial_{\mu} + i g_{s} \frac{\lambda_{\alpha}}{2} G^{\alpha}_{\mu} \right) q - \frac{1}{4} G^{\alpha}_{\mu\nu} G^{\alpha\mu\nu}$$

Effective Lagrangian

$$\mathcal{L} = \frac{1}{4} f_{\pi}^{2} \Big[Tr \nabla_{0} \Sigma \nabla_{0} \Sigma^{\dagger} - v^{2} \vec{\nabla} \Sigma \vec{\nabla} \Sigma^{\dagger} \Big] + f_{\pi}^{2} \Big[\frac{a}{2} Tr \tilde{M} (\Sigma + \Sigma^{\dagger}) + \frac{\chi}{2} Tr M (\Sigma + \Sigma^{\dagger}) \Big].$$

Color-flavor locked phase

$$\mathscr{L}_{Wx}(x) = \frac{G}{\sqrt{2}} l_{\mu}(x) \mathscr{I}_{W}^{\mu}(x) + \text{H.C.},$$

QCD Lagrangian – Hadron phase

NLWM (non-linear Walecka model)

$$\begin{split} \mathcal{L} &= \sum_{B} \bar{\psi}_{B} \left[\gamma_{\mu} \left(i \partial^{\mu} - g_{\nu B} V^{\mu} - g_{\rho B} \mathbf{t} \cdot \vec{b}^{\mu} \right) - \left(M - g_{sB} \phi - g_{\delta B} \mathbf{t} \cdot \vec{\delta} \right) \right] \psi_{B} \\ &+ \frac{1}{2} \left(\partial_{\mu} \phi \partial^{\mu} \phi - m_{s}^{2} \phi^{2} - \frac{1}{3} \kappa \phi^{3} - \frac{1}{12} \lambda \phi^{4} \right) - \frac{1}{4} \Omega_{\mu\nu} \Omega^{\mu\nu} + \frac{1}{2} m_{v}^{2} V_{\mu} V^{\mu} \\ &- \frac{1}{4} \vec{B}_{\mu\nu} \cdot \vec{B}^{\mu\nu} + \frac{1}{2} m_{\rho}^{2} \vec{b}_{\mu} \cdot \vec{b}^{\mu} + \frac{1}{2} \left(\partial_{\mu} \vec{\delta} \partial^{\mu} \vec{\delta} - m_{\delta}^{2} \vec{\delta}^{2} \right), \end{split}$$

QMC model

$$E_{B}^{\text{bag}} = \sum_{q} n_{q} \frac{\Omega_{q}}{R_{B}} - \frac{Z_{B}}{R_{B}} + \frac{4\pi}{3} R_{\text{B}}{}^{3} B_{N}$$

QCD Lagrangian – Quark phase

NJL (Nambu-Jona Lasinio) model

$$\mathcal{L} = \bar{q} \left(i \gamma^{\mu} \partial_{\mu} - m \right) q + g_{S} \sum_{a=0}^{8} \left[\left(\bar{q} \lambda^{a} q \right)^{2} + \left(\bar{q} i \gamma_{5} \lambda^{a} q \right)^{2} \right]$$
$$+ g_{D} \left\{ \det \left[\bar{q}_{i} \left(1 + \gamma_{5} \right) q_{j} \right] + \det \left[\bar{q}_{i} \left(1 - \gamma_{5} \right) q_{j} \right] \right\},$$

MIT Bag *

 $\mathcal{L} = \left[\frac{i}{2} \left(\bar{\psi}\gamma^{\mu}\partial_{\mu}\psi - \left(\partial_{\mu}\bar{\psi}\right)\gamma^{\mu}\psi\right) - B\right]\theta_{v}(x) - \frac{1}{2}\bar{\psi}\psi\Delta_{s}$