Massive Neutrino Self-Interactions and the Hubble Tension

Shouvik Roy Choudhury Distinguished Postdoctoral Fellow Academia Sinica Institute of Astronomy and Astrophysics (ASIAA)

December 16, 2023

2023 NCTS Annual Theory Meeting

Shouvik Roy Choudhury DistinguMassive Neutrino Self-Interactior

December 16, 2023

1/20

• Shouvik Roy Choudhury, Steen Hannestad, Thomas Tram, "Updated constraints on massive neutrino self-interactions from cosmology in light of the H₀ tension," arXiv: 2012.07519 (JCAP 03 (2021) 084).

Introducing Neutrinos

• Active neutrinos have three mass eigenstates (ν_1 , ν_2 , and ν_3) which are quantum superpositions of the 3 flavour eigenstates (ν_e , ν_{μ} , and ν_{τ}). The sum of the mass of the neutrino mass eigenstates, is the quantity,

$$\sum m_{\nu} \equiv m_1 + m_2 + m_3,\tag{1}$$

where m_i is the mass of the i^{th} neutrino mass eigenstate.

- Tightest bounds on $\sum m_{\nu}$ come from cosmology.
- We use the approximation, $m_i = \sum m_{\nu}/3$ for all *i*.
- The radiation density in the early universe can be written as,

$$\rho_r = \left[1 + \frac{7}{8} \left(\frac{4}{11}\right)^{4/3} N_{\text{eff}}\right] \rho_\gamma \tag{2}$$

・ コ ト ・ 国 ト ・ 国 ト ・ 国 ト ・ 国

 $N_{\rm eff}$ is the effective number of relativistic degrees of freedom.

The $\Lambda {\rm CDM}$ parametrization

• The $\Lambda {\rm CDM}$ model parametrization is given by:

$$\theta = \{\Omega_{\rm c}h^2, \Omega_{\rm b}h^2, 100\theta_{MC}, \tau, \ln(10^{10}A_s), n_s\}.$$
 (3)

- $\omega_c \equiv \Omega_c h^2$ and $\omega_b \equiv \Omega_b h^2$ are the present-day physical CDM and baryon densities respectively.
- θ_{MC} is the parameter for angular size of the sound horizon, i.e. ratio between the sound horizon r_s^* and the angular diameter distance D_A^* at photon decoupling.
- τ is the optical depth to reionization. $\tau = \int_0^{z_{re}} n_e \sigma_T dl$ where n_e is free electron number density, σ_T is the Thomson scattering cross-section.
- n_s and A_s are the power-law spectral index and amplitude of the primordial scalar perturbations, respectively, at the pivot scale of $k_* = 0.05$ h Mpc⁻¹, i.e. the primordial power spectrum $P(k) = A_s (k/k_*)^{n_s-1}$.

The sound horizon at last scattering

• The comoving sound horizon at the CMB last scattering is

$$r_s^* = \int_{z_*}^{\infty} \frac{c_s(z)dz}{H(z)} \tag{4}$$

- r_s^{drag} is the comoving sound horizon at the end of drag epoch, which is slightly higher (around 2%) than r_s^*
- The angular diameter distance to the last scattering surface is

$$D_A^* = \int_0^{z_*} \frac{dz}{H(z)} \tag{5}$$

December 16, 2023

5/20

- $\theta_{MC} = r_s^*/D_A^* \simeq \pi/\Delta l$, where Δl is the peak spacing in CMB temperature power spectrum.
- Remember, in ACDM (+massive neutrinos):

$$H(z)^{2} = \left[\omega_{\gamma}(1+z)^{4} + (\omega_{c} + \omega_{b})(1+z)^{3} + \omega_{\Lambda} + \frac{\rho_{\nu}(z)}{\rho_{\rm cr,0}}\right].$$
 (6)

Shouvik Roy Choudhury DistinguMassive Neutrino Self-Interaction

The Hubble Tension

Value from Planck 2018 in Λ CDM : $H_0 = 67.36 \pm 0.54$ km/s/Mpc Value from calibrated type Ia Supernovae in the local universe: $H_0=73.04 \pm 1.04$ km/s/Mpc (SH0ES 2022)

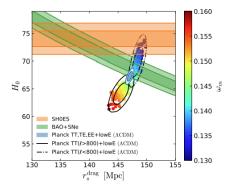
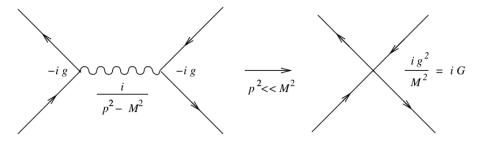


Figure: Depiction of the H0 tension

Lloyd Knox, Marius Millea, arXiv: 1908.03663 (Phys. Rev. D 101, 043533 (2020) Shouvik Roy Choudhury DistinguMassive Neutrino Self-Interaction December 16, 2023 6/20

Extra light relics in the early universe


- $100\theta_{MC} = 1.04109 \pm 0.00030$ (68%, Planck 18 TT, TE, EE+lowE). This is a measurement with 0.03%. θ_{MC} is the most well-constrained parameter in all of cosmology.
- Theoretical value of $N_{\rm eff}^{SM} = 3.0440 \pm 0.00024$ assuming standard model of particle physics.
- Extra $\Delta N_{\text{eff}} \simeq 1$ can increase H(z) in the early universe, which will decrease r_s^* enough to solve the Hubble tension.
- But in Λ CDM+ N_{eff} model: $N_{\text{eff}} = 2.99^{+0.34}_{-0.33}$ (95%, Planck 2018 TT,TE,EE+lowE+lensing+BAO)
- Simple light relics are not enough to solve the 5σ Hubble tension.

Neutrino Self-interactions mediated by a heavy scalar

- In this paper we have updated the constraints from cosmology on flavour universal neutrino self-interactions mediated by a heavy scalar ($m_{\phi} \geq 1$ keV), in the effective 4-fermion interaction limit (CMB temperature is far lower than the keV range).
- Simplified universal interaction: $\mathcal{L}_{\mathrm{int}} \sim g_{ij} \bar{\nu}_i \nu_j \Phi$, with $g_{ij} = g \delta_{ij}$.
- The effective self-coupling, $G_{\rm eff} = g^2/m_{\Phi}^2$, with $G_{\rm eff} > G_F$ (Fermi constant), so that they remain interacting with each other even after decoupling from the photons at $T \sim 1$ MeV.
- The self-interaction rate per particle $\Gamma = n \langle \sigma v \rangle \sim G_{\text{eff}}^2 T_{\nu}^5$, where $n \propto T_{\nu}^3$ is the number density of neutrinos. Neutrinos don't free-stream until $\Gamma < H$.
- Introducing this kind of interaction had shown potential in solving the Hubble tension in previous works in the very strong interaction range $(G_{\rm eff} \sim 10^9 G_F)$ using older data.

(日) (周) (王) (王)

Feynman Diagram

 $M \equiv m_{\Phi}$

Shouvik Roy Choudhury Disting Massive Neutrino Self-Interaction December 16, 2023 9/20

ъ

< ∃⇒

The Cosmological Model of interest

- Cosmological model: $\Lambda \text{CDM} + \log_{10} \left[\text{G}_{\text{eff}} \text{MeV}^2 \right] + \text{N}_{\text{eff}} + \sum m_{\nu}$.
- Kreisch et. al., Phys. Rev. D 101, 123505 (2020) (arXiv: 1902.00534) found the 68% bounds: $\log_{10} \left[G_{eff} MeV^2 \right] = -1.41^{+0.20}_{-0.066}$ (strong self-interactions), $H_0 = 71.1 \pm 2.2 \text{ km/s/Mpc}$, $N_{eff} = 3.80 \pm 0.45$, $\sum m_{\nu} = 0.39^{+0.16}_{-0.20} \text{ eV}$ with Planck 2015 low-*l* and high-*l* TT+lensing combined with BAO, with similar goodness of fit to the data as ΛCDM .
- In this model, N_{eff} and H_0 are positively correlated \rightarrow Solution to the Hubble tension came from high $N_{\text{eff}} \simeq 4$ values.
- Planck polarization data was not used for main conclusions.

ロトス開きるほどのほど、ほ

The Cosmological Model of Interest

Image Credit: Kreisch et. al., Phys. Rev. D 101, 123505 (2020), arXiv: 1902.00534

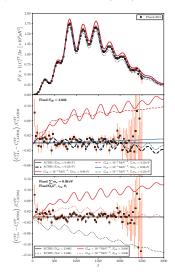


Figure: Degeneracy of of $G_{\rm eff}$ with $N_{\rm eff}$ and $\sum m_{\nu}$ in the CMB TT spectrum.

3

Shouvik Roy Choudhury DistinguMassive Neutrino Self-Interaction December 16, 2023 11/20

The Cosmological Model of interest

- With the public release of the Planck 2018 likelihoods, we thought it is timely to test the model again.
- We made runs which incorporated the full prior range of $\log_{10} \left[\mathbf{G_{eff}} \mathrm{MeV}^2 \right]$, i.e. $-5.5 \rightarrow -0.1$.
- We also run the non-interacting case $(NI\nu: G_{eff} = 0)$, the moderately interacting case $MI\nu$ $(log_{10} [G_{eff}MeV^2] \lesssim -2)$, and the strongly interacting case $(SI\nu)$ $(log_{10} [G_{eff}MeV^2] \gtrsim -2)$ separately.
- We sample the parameter space using the nested sampling technique. We use the publicly available **PolyChord** extension of **CosmoMC**, called **CosmoChord**.
- Use of the nested-sampling package PolyChord enables us to calculate evidences accurately, and properly sample this parameter space of **bimodal posterior distributions**.
- We modify the **CAMB** code to incorporate the neutrino self-interactions in the perturbation equations.

・ロト ・戸 ・ ・ ヨ ・ ・ ヨ ・ うへつ

12/20

December 16, 2023

Shouvik Roy Choudhury DistinguMassive Neutrino Self-Interaction

Plots from runs with full prior range of $log_{10}[G_{eff}MeV^2]$

Main conclusions follow from the TTTEEE+lowE+EXT dataset (blue curve).

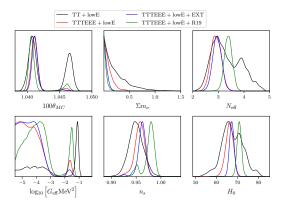


Figure: Here TTTEEE+lowE denotes the full Planck 2018 temperature and polarisation data. EXT denotes Planck 2018 lensing + BAO + RSD + SNeIa. R19 is the Gaussian prior of $H_0 = 74.03 \pm 1.42$ km/s/Mpc.

Roy Choudhury et al, arXiv 2012.07519 (JCAP 03 (2021) 084) Shouvik Roy Choudhury Distingt Massive Neutrino Self-Interaction December 16, 2023 13/20

Mode separation: $MI\nu$ and $SI\nu$ plots shown separately

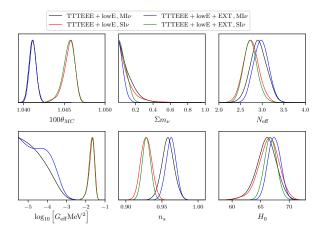


Figure: Here TTTEEE+lowE denotes the full Planck 2018 temperature and polarisation data. EXT denotes Planck 2018 lensing + BAO + RSD + SNeIa. R19 is the Gaussian prior of $H_0 = 74.03 \pm 1.42$ km/s/Mpc.

Roy Choudhury et al, arXiv 2012.07519 (JCAP 03 (2021) 084) Shouvik Roy Choudhury Distingt Massive Neutrino Self-Interaction December 16, 2023 14/20

Mode separation: $MI\nu$ and $SI\nu$ plots shown separately

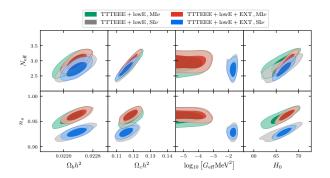


Figure: Here TTTEEE+lowE denotes the full Planck 2018 temperature and polarisation data. EXT denotes Planck 2018 lensing + BAO + RSD + SNeIa. R19 is the Gaussian prior of $H_0 = 74.03 \pm 1.42$ km/s/Mpc.

Roy Choudhury et al, arXiv 2012.07519 (JCAP 03 (2021) 084)

Discussion

- $\log_{10} [G_{\text{eff}} \text{MeV}^2]$ is degenerate with θ_{MC} and n_s . This allows for a bimodal posterior distribution, even with the latest full Planck data.
- With TTTEEE+lowE+EXT we found the following <u>95% bounds</u>, for the SI ν $H_0 = 66.7^{+2.2}_{-2.1} \text{ km/s/Mpc}$ $N_{\text{eff}} = 2.73^{+0.34}_{-0.31}$ $\sum m_{\nu} < 0.15 \text{ eV}.$
- Even if one were to re-analyze the data with a fixed $N_{\rm eff} = 3.044$ with massive neutrinos and strong interactions, one would very likely get H_0 values in the ballpark of 69 70 km/s/Mpc (as can be seen from the plots above), which does not work as a solution to the Hubble tension, albeit reducing the tension slightly compared to vanilla ΛCDM .
- For the Non-interacting case $(NI\nu : \Lambda CDM + N_{eff} + \sum m_{\nu})$, we find $H_0 = 67.3 \pm 2.2 \text{ km/s/Mpc} (95\%) \rightarrow$ The strongly interacting model doesn't work better than this simple extension to ΛCDM .

・ロト ・ 日 ト ・ 日 ト ・ 日 ト ・ 日

December 16, 2023

16/20

 $EXT \equiv Planck 2018 lensing + BAO + RSD + SNeIa$

Shouvik Roy Choudhury Disting Massive Neutrino Self-Interaction

Discussion

- Furthermore, Neutrino self-interactions are also strongly constrained from particle physics experiments, with the exception of flavour specific interaction among the τ -neutrinos.
- We find, $-2 \left[\log \left(\mathcal{L}_{SI\nu} / \mathcal{L}_{NI\nu} \right) \right] = 3.4$ (approx. $\Delta \chi^2$), and $Z_{SI\nu} / Z_{NI\nu} = 0.06$ (evidence ratio), with TTTEEE+lowE+EXT.
- Bayesian evidences and log likelihood values both disfavour very strong self-interactions compared to $\Lambda CDM + N_{eff} + \sum m_{\nu}$, i.e. the non-interacting scenario $NI\nu$.
- To conclude, with current data, the strong neutrino self-interaction model does not look like a promising solution to the current H_0 discrepancy.

Particle Physics Constraints

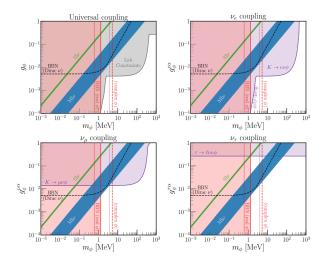


Figure: Constraints from particle physics

Nikita Blinov et al, arXiv 1905.02727 (Phys.Rev.Lett. 123 (2019) 195191102)

18/20

Shouvik Roy Choudhury DistinguMassive Neutrino Self-Interaction December 16, 2023

Thanks for listeninng! Questions are welcome!

Shouvik Roy Choudhury DistingtMassive Neutrino Self-Interaction December 16, 2023 19/20

(日) (四) (코) (코) (코) (코)