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The QCD Axion: Motivation

Neutron

QCD is naturally CP violating from phenomena like QCD-
instantons

One naively expects a neutron electric dipole moment of 106 e
cm

But nEDM is measured to be below 3x102% e cm (Baker, 2006)

The best explanation? New U(1) axial symmetry, that when
broken, cancels CP violation in the strong sector (Peccei, Quinn, <
1977) 105 m

Consequence: New particle, called the axion (Weinberg, Wilczek,
1978)

v

d = 10*¥eem
< 3x102%% e cm
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Axions as Dark Matter

e Axions are produced athermally

* Misalignment Mechanism — Phase transition in the early
universe leaves energy in the axion field which behaves as
dark matter

* String/Defect Decay — Energy in topological defects
radiates as cold axions

Timne

* In both cases axions are produced cold and in
guantities sufficient to make up some or all of dark
matter

* Perfect knowledge of QCD, cosmology, and inflation
could, in principle, predict the axion mass that yields
the amount of dark matter we have today

Massless
axions

Massive
axions

B; )
Axion field. 6
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Theoretical Preferences on Scale

* In general, things that happen before the end of inflation could
produce dark matter with any axion mass, but after inflation favors
lueV and above

108 eV 10% eV 100 eV

e e

104 Hz 1Hz 104 Hz

Pre-Inflation PQ Phase Transition

Post-Inflation PQ Phase Transition
—_—
Adapted From: PDG Axion Review 2018

* Above 1 micro-eV, axions may have been produced after inflation




Deeper Theoretical Preferences
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There is both model dependence and genuine disagreement in calculations about the axion mass that
produces 100% dark matter density today — it is up to experimentalists do a comprehensive search
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Detecting Axions
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Coupling to Photons

Coupling to Nucleon EDM

Coupling to Axial Nuclear Moment

Coupling to Axial Electron Moment

Adapted from Y. Kahn, See also Graham and Rajendran, Phys.Rev. D88 (2013) 035023
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Detecting Axions
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Coupling to Photons
?

Clean experimental signal

Well developed techniques COUpling to Nucleon EDM

Ripe for incorporating
quantum sensing Coupling to Axial Nuclear Moment
techniques S =

Promising experimental
techniques under development

~Coupling to Axial Electron Moment

Adapted from Y. Kahn, See also Graham and Rajendran, Phys.Rev. D88 (2013) 035023
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Axion Photon Bounds

GitHub - cajohare/AxionLimits: Data, plots and code for constraints on axions, axion-like
particles, and dark photons - includes zoom-in later on, updated Oct 2024
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https://github.com/cajohare/AxionLimits
https://github.com/cajohare/AxionLimits

Axion Photon Bounds, Zoomed In
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Axion Detector Length and Time Scales
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Principle of the Sikivie Axion Haloscope
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See P. Sikivie, PRL 51, 1415 (1983) for origin
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Axion Haloscope for my Intro Physics Class
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Axion Haloscope for my Intro Physics Class

Axion Dark Electromagnetic Cavity
Matter Resonance

A \
A
) :
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Axion Haloscope: How to search for Dark Matter Axions

Primakoff Conversion

LY

Dark Matter Axions will convert to
photons in a magnetic field.

The conversion rate is enhanced if
the photon’s frequency corresponds
to a cavity’s resonant frequency.

Sikivie PRL 51:1415 (1983)

Signal Proportional to Noise Proportional to
Cavity Volume Cavity Blackbody Radiation
Magnetic Field Amplifier Noise

Cavity Q
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ADMX Design

Field-Free Region

Quantum Amplifier
Package

4 K
Antennas

Mixing
Chamber

Microwave
Cavity

100-250 mK
Tuning Rods

Magnet
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Tuning ADMX

Example Cavity Tuning Curve Tuning Rods within Cavity
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We are only sensitive to axions
within ~10 kHz of the cavity’s
fundamental mode.

Frequency (MHz)

We tune this frequency
mechanically by moving rods
within the cylinder.

Rod Position (Radians)
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The Importance of Noise

10 F

Signal Power

0 F I Noise Power

8.9640 8.9642 8.9644 8.9646 8.9648 8.9650
frequency [Hz| x 10°

SNR

We need our noise to be much smaller than our signal to make a detection.
The noise is a thermal, and the slower we scan the smaller the uncertainty.

We must carefully calibrate the noise of our system — to understand our sensitivity, we must understand the
temperatures of the components, the signal loss in the cables, and the performance of the amplifiers.
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Minimizing Noise

e owpu A Mt
yp P lhroug 300 K
4K
1K
Hot 400 mK
Load
100 mK
Controllable
heater
between 0.4-4 K

M. Guzzetti, APS April 2023

Noise is minimized by cooling to millikelvin

temperatures and using superconducting amplifiers
operating at or near the standard quantum limit

S SR I
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Input li ' | -
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JPA provided by

Siddig Group at UC Berkeley
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ADMX Operations

x 1021 candidate: 896.448 MHz

e The cavity is tuned every 100 seconds, during which power spectra are
B ey e taken. Overlapping power spectra are examined for the characteristic
axion signal shape appearing on-resonance.

Power [Watt]

B e The picture on the left shows how an axion signal would appear in the
i =3 data. This is a synthetic signal.

8.9640 8.9642 89644 8.9646 8.9648 8.9650
frequency [He] x 108
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Data Taking Cadence

14 “nibbles” = ~ 10 MHz sweeps single scans: range: 50 kHz, resolution: 100Hz, integration time: 100s

First pass through
nibble at fixed =
tuning rate. ~
4
22 Make RFI checks.

Continue to Rescan at variable Z
next nibble. oza tuning rate. ~2-5x

s k|
qdd

Turn off secondary
synthetic axion
injections.

Continue to
next nibble.

Continue to .
) ~ .
[ next nibble. ] % Persistence check

Check for signal
Continue to
Turn off primary next nibble. suppression in
Continue to theti TMp10 mode.
bble. synthetic axion -
next ni injections. Rescan. ~

Continue to m Check signal B2.

Aqd

= next nibble. ;
Continue to r:d Persistence check j— ~
next nibble. 04 i
Z.
Continue to Axion
next nibble. found.

[ Continue to

next nibble. o Bartram et al. Phys. Rev. D 103, 032002 (2021)
Rybka - PPP15, Taipei, 2024 21




ADMX Recent Results

Excluded parameter space over the last 5 years Preliminary sensitivity fro(m\;c)his year
m, (ue
Axion Mass (ueV) i 4.9 5.0 9:1 Bl 5.3 5.4
26 28 30 32 34 36 38 40 42 1077 r
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[ :
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ADMX (2019) == N-body
Bl )\axwellian L ADMX 2024
650 70 750 800 850 900950 1000 1180 1200 1220 1240 1260 1280 1300 1320
Frequency (MHz)

Frequency (MHz)

Bartram et al. PRL 127, 261803 (2021) M. Guzzetti, Patras Workshop 2024

We are sensitive to DFSZ or near-DFSZ axions at nominal dark matter densities, and KSVZ axions at
fractional dark matter densities.
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ADMX Results in broader context

m, (ueV)
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ADMX High-Resolution Results

N\
_= - virialized
' £lows
g :
5 iatheemal L
a8 halo. :
: rgce'mr
: nise
§ /7w
e TR
/
Frequency M. Guzzetti

Nonvirialized “extra cold” dark matter
produces a narrow signal with a
measurable doppler shift
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A high-resolution analysis to search for
narrowband signals puts limits on dark
matter axion flow densities
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Other Operating Haloscopes

Frequency [MHz]
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ADMX: Future Plans

Sensitivity Projections
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ADMX-EFR

* Incorporate technologies as they mature for a continuous scan

sensitive to DFSZ axions at 2GHz and up
* Magnet is already deployed at Fermilab
* Opportunity for a “Dark Wave Laboratory”

Magnetic shield

—

Electronics B X : MR'\ Magnet
V- dil. fridge Resonator

dil. fridge
Resonator

array

_Low hoise
~ amplifiers
25mK
0.01 Gauss Site: Fermilab
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Status of ADMX EFR

Magnet has been
delivered to Fermilab
June 26, 2025

Resonator array
designed; prototype
constructed

Rybka - PPP15, Taipei, 2024
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The Future of Haloscopes

A thorough search up to 10 GHz+ will require

* Sophisticated, high-Q Resonators

At higher frequencies, axion haloscopes read out by

suffer from unfavorable * Sub-quantum limit detectors
-Volume scaling inside of

“Resonator Q scaling * Large, high-field magnets

-Standard Quartum Limit noise scaling | ted at
ocated a

* Dedicated Facilities
operated by

* Larger Collaborations



Conclusions

* Much of the theoretically preferred ultralight dark matter is
accessible experimentally (with enough work)

* Haloscopes (e.g., ADMX) are leading the way and could make a
discovery at any time

* New technologies are enabling broader and more powerful searches,
accelerating towards the goal of discovery
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