

Constraining Dark Matter Self-Interactions from Weak Lensing Yi-Ming Zhong (鍾益鳴) City University of Hong Kong w/S. Adhikari, A. Banerjee, B. Jain & T.-H. Shin [arXiv: 2401.05788], submitted to ApJ Particle Physics Phenomenology Workshop, 24/10/2024

Outline

- Introduction
 - Dark matter self-interactions
 - Effects on halos
- SIDM
- Summary

Using ACT x DES weak lensing measurement to constrain

Yi-Ming Zhong (CityUHK)

What is dark matter?

Maybe dark matter is not alone...

Yi-Ming Zhong (CityUHK)

Dark sector

Yi-Ming Zhong (CityUHK)

Dark sector

Self-interactions?

Yi-Ming Zhong (CityUHK)

Dark sector

Nucleon-nucleon self-interaction

 \mathbf{N}

Yi-Ming Zhong (CityUHK)

Cross section strength: $\sigma_{\rm T}/m_{\rm N} \sim 10\,{\rm cm}^2/{\rm g}$

Nuclear Data Sheets '11

 $1\,\mathrm{cm}^2/\mathrm{g}$ $\approx 2 \,\mathrm{barn/GeV}$

Cold Collisionless Dark Matter (CDM)

Cross section strength:

DM

Yi-Ming Zhong (CityUHK)

 $\sigma_{\rm T}/m_{\rm DM} \sim 10^{-70} \, {\rm cm}^2/{\rm g}$ (DM mass~ GeV)

DM

Yi-Ming Zhong (CityUHK)

Self-Interacting Dark Matter (SIDM)) Cross section strength: $\sigma_{\rm T}/m_{\rm DM} \sim 1\,{\rm cm}^2/{ m g}$

Yi-Ming Zhong (CityUHK)

New interaction $\bigwedge \bigwedge \bigwedge$ DM

$\sigma_{\rm T}/m_{\rm DM} \sim 1\,{\rm cm}^2/{\rm g}$

$(1 \,\mathrm{cm}^2/\mathrm{g})$ $(0.4 \, \mathrm{GeV}/\mathrm{cm}^3)$ $200 \,\mathrm{km/s}$ σ/m ρ \mathcal{U}

Spergel & Steinhardt '00

Where to look at?

Yi-Ming Zhong (CityUHK)

Dark matter halos

~2 million light years

11

Constraints on dark matter self-interaction

Constraints on dark matter self-interaction

Yi-Ming Zhong (CityUHK)

MW Cluster

Constraints on dark matter s

Yi-Ming Zhong (CityUHK)

MW Cluster

Bullet Clus (Robertson+

allowed value

10³

10²

v [km/s]

WE'VE ALSO SEEN MORE DIRECT EVIDENCE FOR DARK MATTER:

WE SAW TWO GALAXIES COLLIDE! EACH GALAXY HAD NORMAL MATTER. AND DARK MATTER THEN THEY COLLIDED! THE NORMAL MATTER SLAMMED INTO EACH OTHER ENORMOUS GALACTIC-SIZED PIECES OF MATTER PASSED RIGHT THROUGH EACH OTHER! THE BULLET CLUSTER

Constraints on dark matter self-interaction

Constraints on dark matter self-interaction

cross section strength

Constrains & sol to the "small-scale problems"

Yi-Ming Zhong (CityUHK)

v [km/s]

Splashback radius deficit (More+ '16)

Cusp vs core (Wandelt+ '00)

Effects of self-interaction

Cooler

Hot (faster)

Yi-Ming Zhong (CityUHK)

Hotter

Time

Cold (slower)

Equipartition

0. Halo formation

Density profile (density at given radii)

Yi-Ming Zhong (CityUHK)

0. Halo formation

Density profile (density at given radii)

1. Core expansion

Yi-Ming Zhong (CityUHK)

Huo, Yu & **YZ** '20

2. Core collapse

Yi-Ming Zhong (CityUHK)

22

2. Core collapse

Yi-Ming Zhong (CityUHK)

23

Dissipative SIDM

e.g., Atomic Dark Matter

Yi-Ming Zhong (CityUHK)

Essig, Mcdermott, Yu & **YZ** (2019)

Nore heat out

Yi-Ming Zhong (CityUHK)

faster collapse

25

Density profile evolution

Evolution stages: 0. Halo formation 1. Core expansion 2. Core collapse

Yi-Ming Zhong (CityUHK)

Velocity dispersion profile evolution

Evolution stages: 0. Halo formation 1. Core expansion 2. Core collapse

Yi-Ming Zhong (CityUHK)

Density profile evolution

Cut at t = 10 Gyrs: Elastic SIDM: Cored profile **Dissipative SIDM:** Quasi-isothermal profile (cuspier than NFW)

Density profile evolution

- Evolution time is set by:
- Elastic SIDM
- Cross section strength
- **Dissipative SIDM**
 - Cross section strengths
 - Energy loss per collision

N-body simulation results

- Consider Inelastic dark matter with state χ and $\chi'(m_{\gamma} > m_{\gamma'})$
- Loss energy for $\chi\chi \to \chi'\chi'$
- Define $v_{\rm th} = c_1 / 2(m_\chi - m_\chi) / m_\chi$

Yi-Ming Zhong (CityUHK)

Huo, Yu & **YZ** (2020)

30

Self-interactions increase halo's **diversity**

Yi-Ming Zhong (CityUHK)

31

Constraining SIDM from ACT x DES weak lensing measurement

Weak lensing

Credit: Sachs

Yi-Ming Zhong (CityUHK)

Source (galaxies) Lens (cluster) Image (galaxies)

Tangential Shear & halo's density

See Dodelson '22

Yi-Ming Zhong (CityUHK)

The tangential shear, γ_t , is sensitive to the excess of the projected lens mass

$$\begin{split} \gamma_t(R) \propto \Delta \Sigma(R) \\ = \langle \Sigma(< R) \rangle - \Sigma(R) \\ \int \\ \frac{1}{\pi R^2} \int_{R' < R} \mathrm{d}^2 R' \Sigma(R') \end{split}$$

Data

- Used the weak lensing measurement from Shin et al. (2021).
- Lens: clusters sampled from Atacama Cosmology Telescope (ACT) DR5.
- Source/Image: galaxies from the Dark Energy Survey (DES) Y3 near the sampled clusters.

Selection of the lens

- Stacked ~1000 galaxy clusters
- Redshift: 0.15-0.7
- Mass: ~ $10^{14} M_{\odot}/h$
- Radius range: 0.2 20 Mpc/h

Yi-Ming Zhong (CityUHK)

ρ

R

Modeling of the lens

- Modeled the lens for CDM, elastic SIDM (eSIDM), and dissipative SIDM (dSIDM).
- Simulated 1000+ halos for each benchmark.

Name	$\sigma/m [\mathrm{cm}^2/\mathrm{g}]$	$\sigma'/m [{\rm cm}^2/{\rm g}]$	$ u_{ m loss}$ [k
CDM		_	_
eSIDM	0.2		_
	0.5	_	_
	1.0	_	_
	2.0	_	_
dSIDM-300	1.0	1.0	300
dSIDM-600	1.0	1.0	600
dSIDM-2000	1.0	1.0	200

Stacked 3D density for the benchmarks

Excess of stacked surface density

CDM under predicts $\Delta \Sigma$ at small radii.

Excess of stacked surface density

Yi-Ming Zhong (CityUHK)

Better fit by dSIDM-600

Allowed parameters of elastic SIDM

Yi-Ming Zhong (CityUHK)

$\sigma/m < 1 \,\mathrm{cm}^2/\mathrm{g}$

(95% CL)

 $\overline{2.0}$

Cuspiness

Dissipative SIDM Elastic SIDM

Log-slope ~ -1.8Less cuspy

Constraining on v_{loss} for dSIDM

 $\nu_{\rm loss} \equiv \sqrt{E_{\rm loss}/m}$

Constraining on v_{loss} for dSIDM

Assume

$$\sigma/m = \sigma'/m = 1 \,\mathrm{cm}^2/\mathrm{g}$$

Allowed parameters of dissipative SIDM

Assume σ/m

 $\nu_{\rm los}$

Yi-Ming Zhong (CityUHK)

$$\sigma = \sigma'/m = 1 \,\mathrm{cm}^2/\mathrm{g}$$

$$_{\rm s} \equiv \sqrt{E_{\rm loss}/m}$$

 $1.6 \times 10^2 \le \nu_{\rm loss} \le 2.4 \times 10^2 \,{\rm km/s}$ $3.2 \times 10^2 \le \nu_{\rm loss} \le 1.6 \times 10^3 \,{\rm km/s}$ $2 \times 10^3 \le \nu_{\text{loss}} \le 2.8 \times 10^3 \,\text{km/s}$

(95% CL)

Outlook

- Future surveys, like Rubin Observatory, will increase the cluster sample size by ~10⁵.
- Can significantly reduce the statistical & systematical errors.

Yi-Ming Zhong (CityUHK)

)⁵. Ie rrors

Summary

- Halos are interesting probes of dark matter properties.
- halos.
- Weak lensing measurements from current and future matter self-interactions.

Yi-Ming Zhong (CityUHK)

Gravothermal evolution increases the diversity of SIDM

galaxy surveys can effectively probe various types of dark

