(Quantum) Complexity of Testing Signed Graph Clusterability

Kuo-Chin Chen Joint work with Simon Apers and Min-Hsiu Hsieh

Talk in Workshop on Quantum Science and Technology

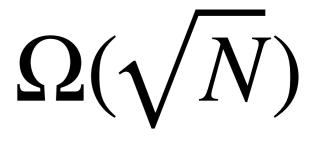
Foxconn Research

Outlines

Motivation and our main results

• Classical clusterability testing query lower bound $\rightarrow \Omega(\sqrt{N})$

• Quantum clusterability testing algorithm $\rightarrow O(N^{1/3})$



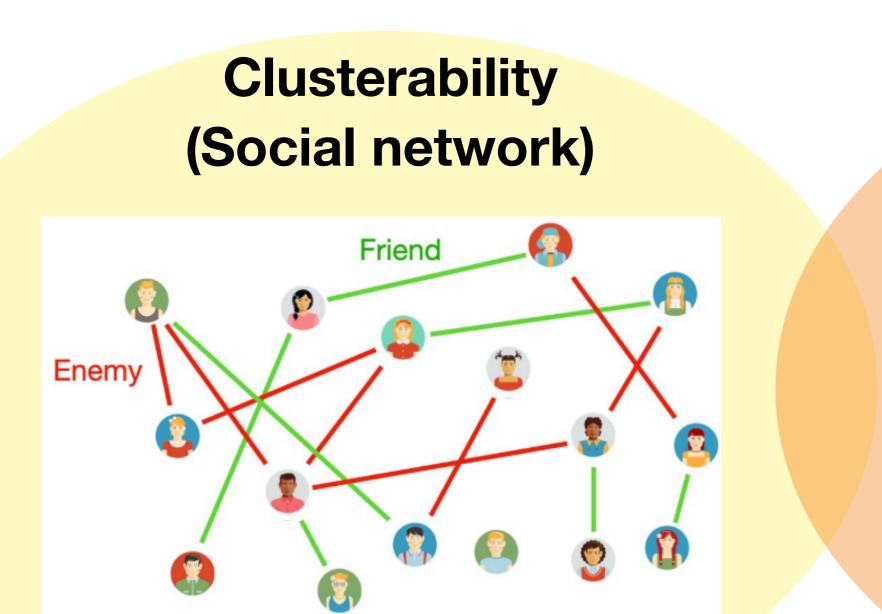
Outlines

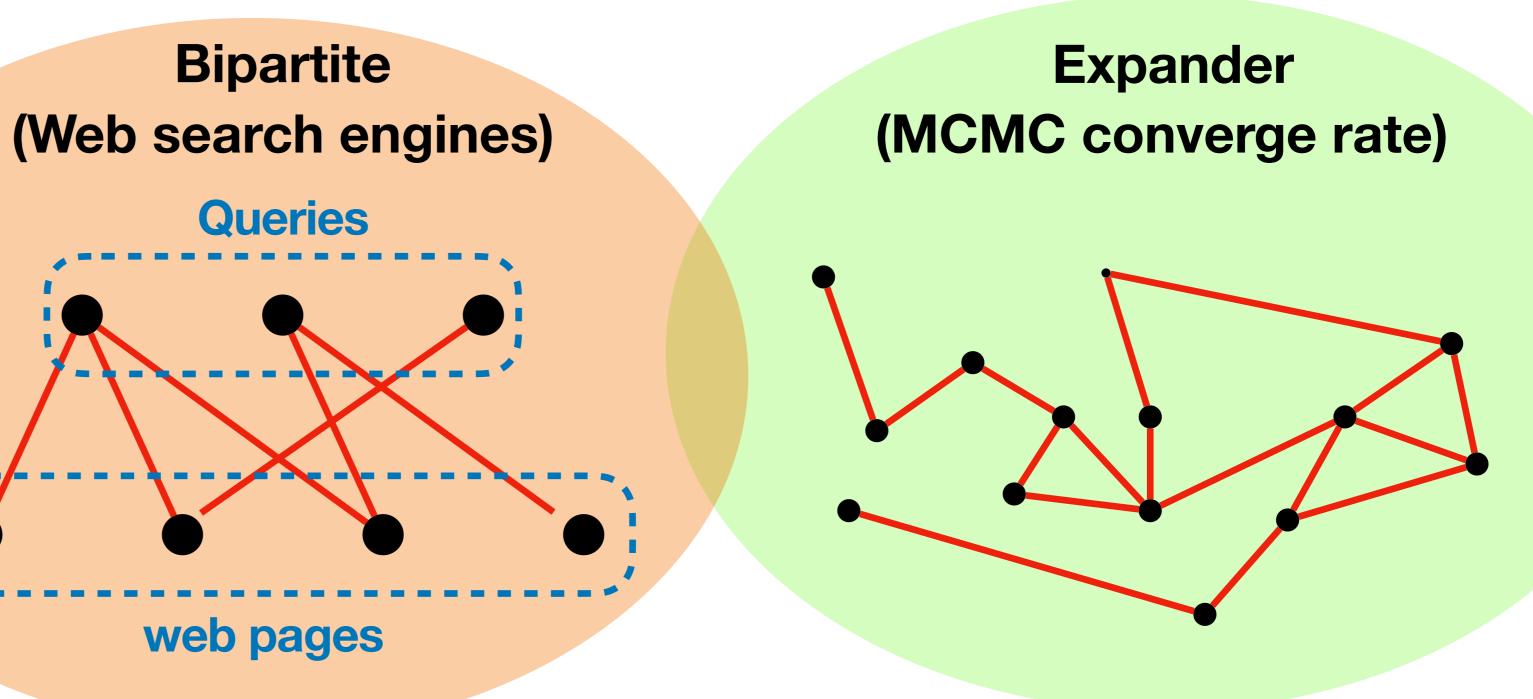
Motivation and our main results

Classical clusterability testing query lower bound

Quantum clusterability testing algorithm

Applications of Graph Properties

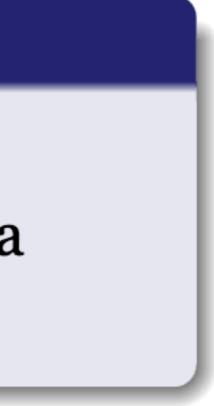


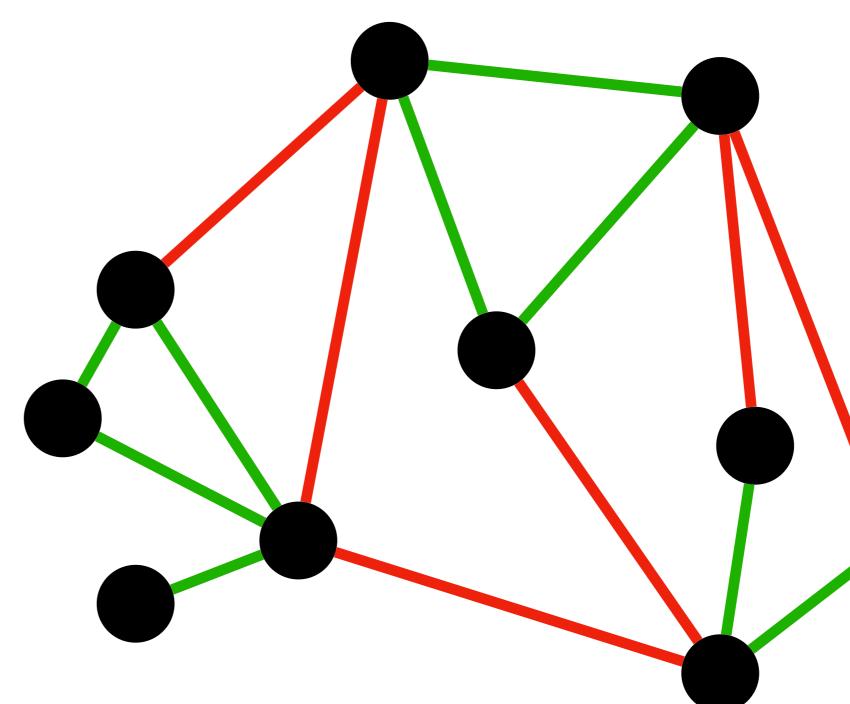


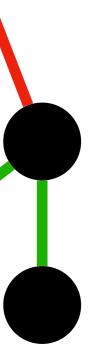
Clusterability for Signed Graphs

Definition 1.2 (Signed graph)

A signed graph $G(V, E, \sigma)$ is a graph whose each edge is assigned by a mapping $\sigma: E \to \{+, -\}$.







Clusterability for Signed Graphs

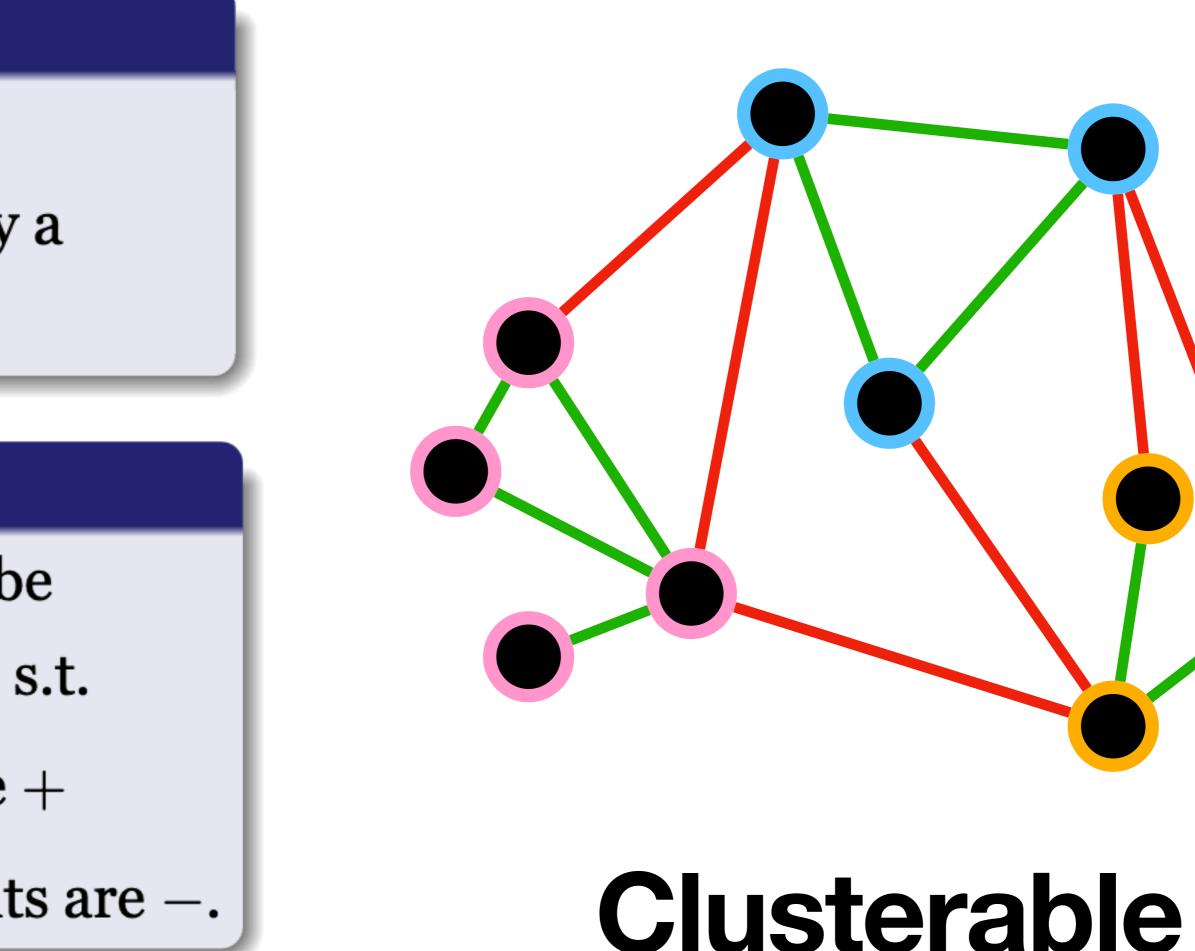
Definition 1.2 (Signed graph)

A signed graph $G(V, E, \sigma)$ is a graph whose each edge is assigned by a mapping $\sigma: E \to \{+, -\}$.

Definition 1.3 (Clusterability)

A signed graph is clusterable if it can be decomposed into several components s.t.

- The edges in each component are +
- The edges connecting components are –.



Clusterability for Signed Graphs

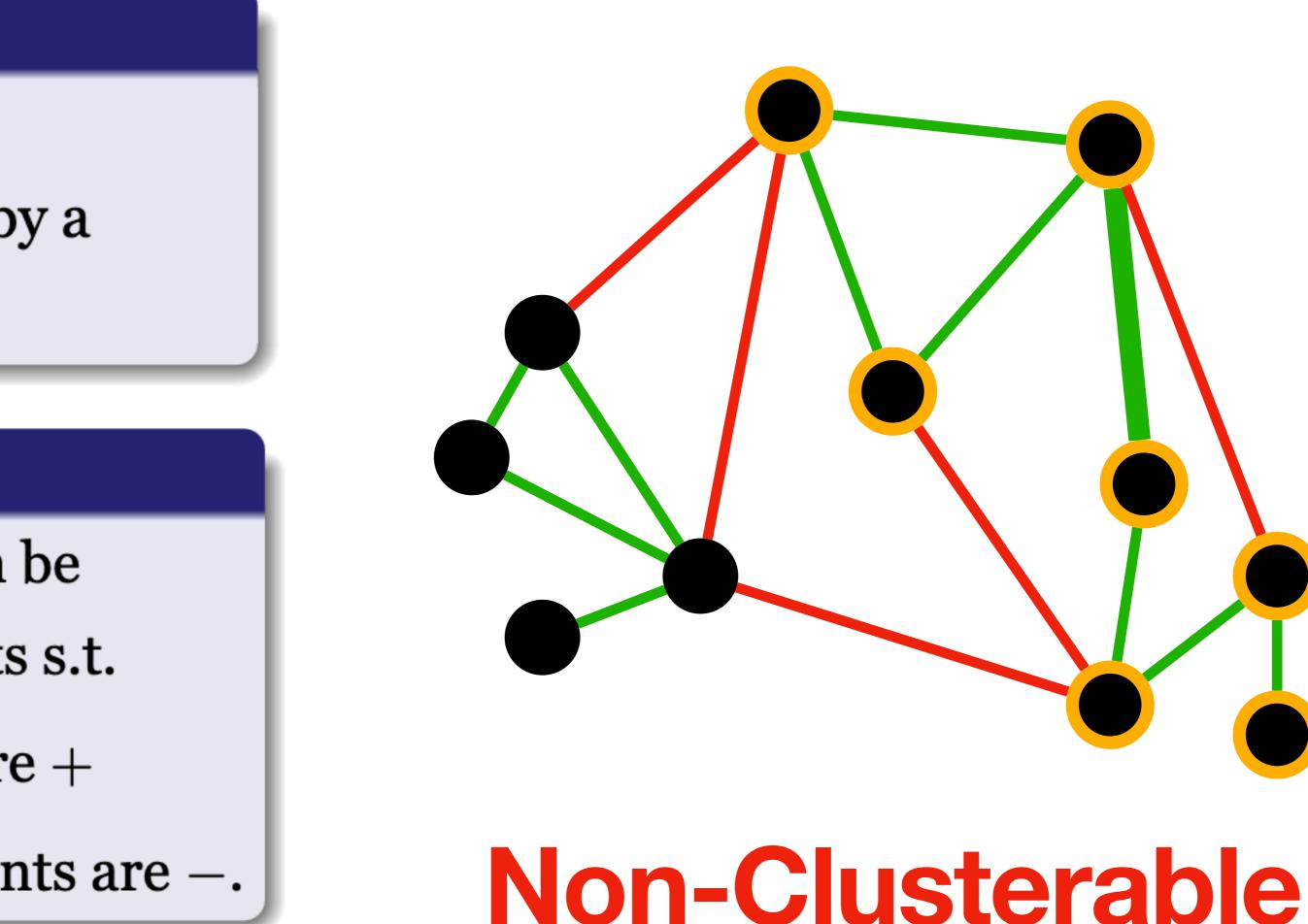
Definition 1.2 (Signed graph)

A signed graph $G(V, E, \sigma)$ is a graph whose each edge is assigned by a mapping $\sigma: E \to \{+, -\}$.

Definition 1.3 (Clusterability)

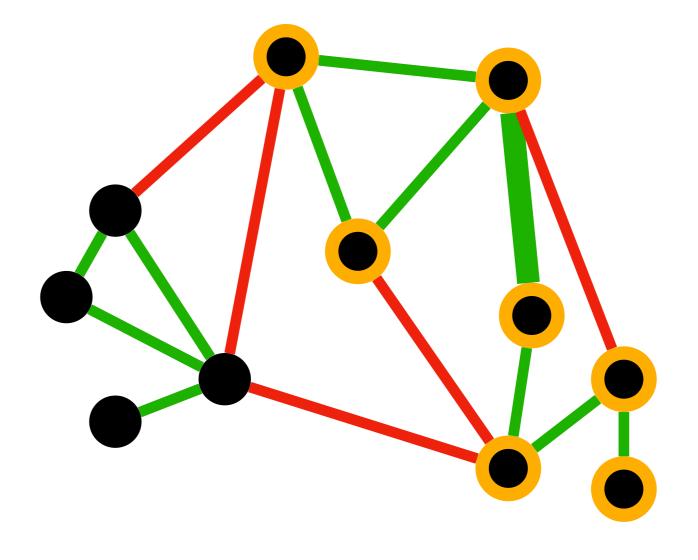
A signed graph is clusterable if it can be decomposed into several components s.t.

- The edges in each component are +
- The edges connecting components are –.



Bounded Degree Graph Query Model

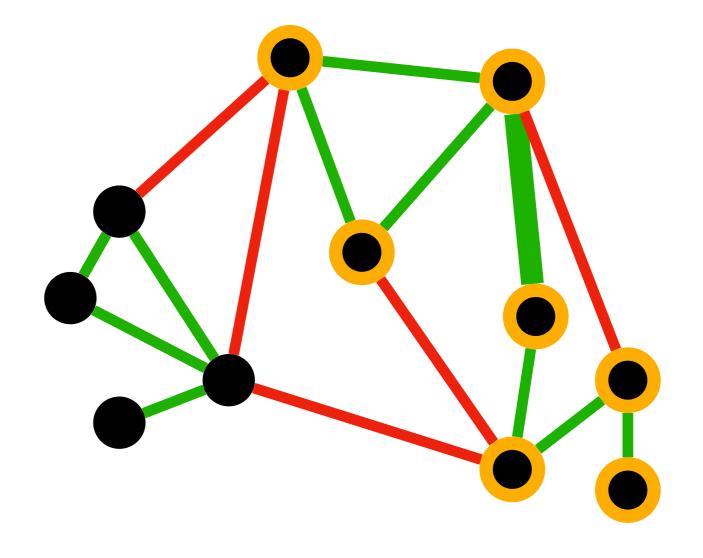
- Given the adjacent list of a graph with degree bound d.
- Query to the list \rightarrow Explore this graph.
- One query \rightarrow one edge



Bounded Degree Graph Query Model

- Given the adjacent list of a graph with degree bound d.
- Query to the list \rightarrow Explore this graph.
- One query \rightarrow one edge

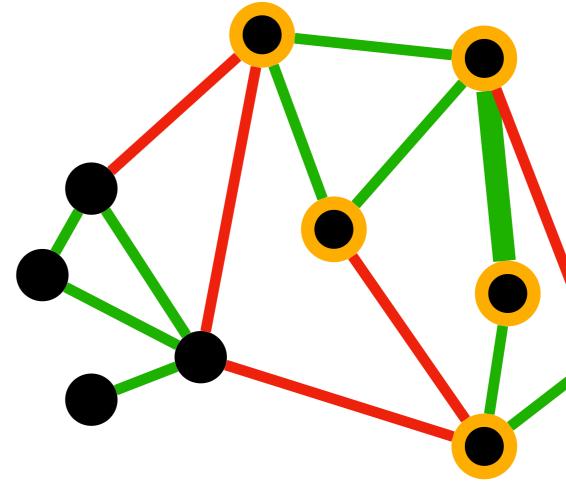
Learn the clusterability without error \rightarrow require O(N) queries.



Bounded Degree Graph Query Model

- Given the adjacent list of a graph with degree bound d.
- Query to the list \rightarrow Explore this graph.
- One query \rightarrow one edge

Test the clusterability in an approximated manner with less queries?



Learn the clusterability without error \rightarrow require O(N) queries.

Graph Property Testing An approximated algorithm

A graph property \mathcal{P} tester is a randomized algorithm: **Input:**

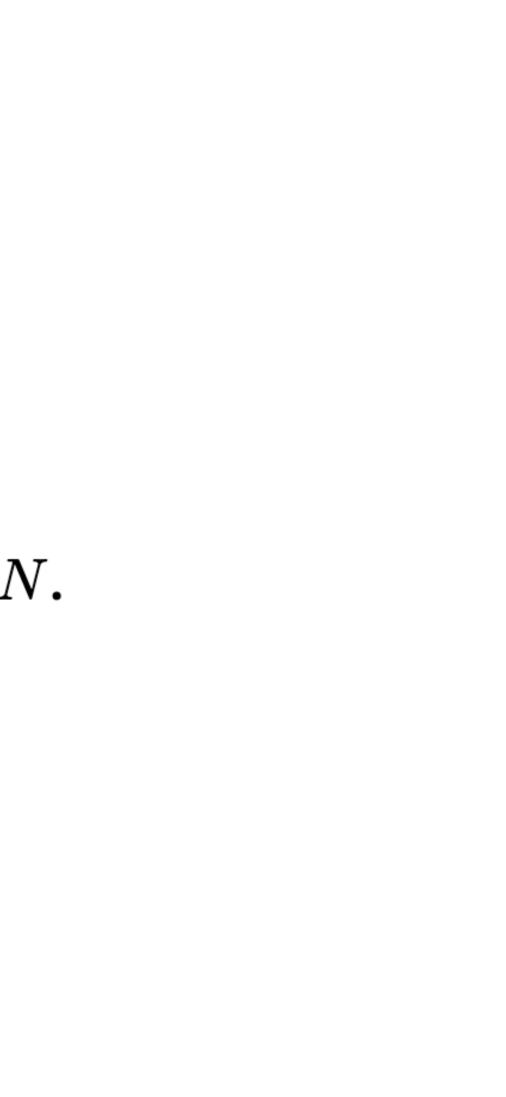
- **2** An error parameter ϵ .

Output with probability at least 2/3:

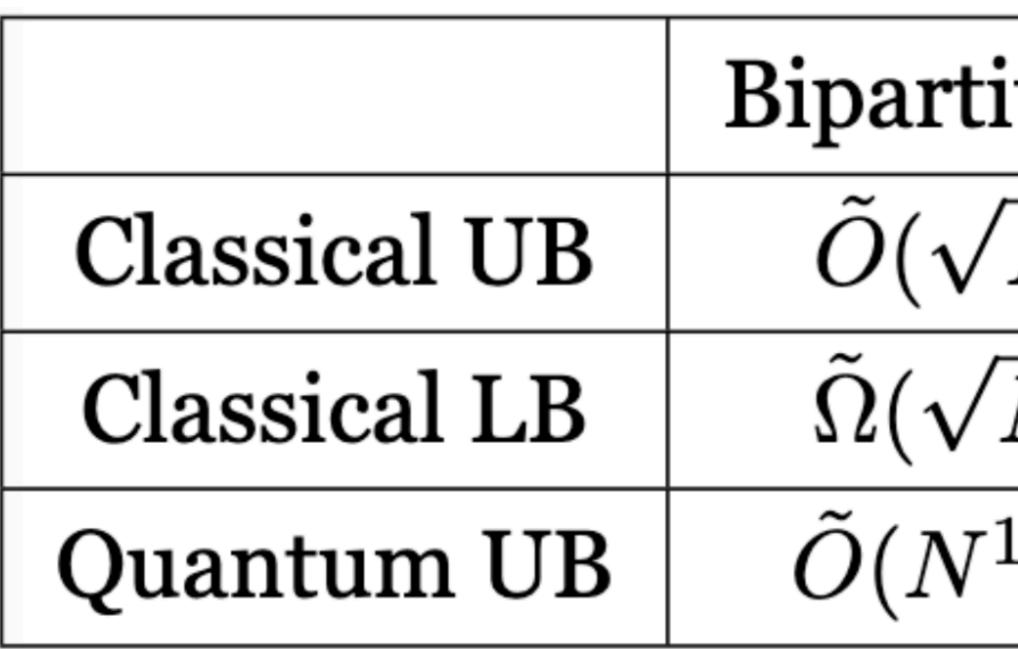
- (ϵ -far from \mathcal{P})
- Otherwise \rightarrow ACCEPT

Query access to a graph $G(V, E, \sigma)$ with maximum degree d and |V| = N.

• Remove or add at least ϵNd edges to make G satisfy $\mathcal{P} \to \mathsf{REJECT}$



Previous Works and Open Problems



Goldreich and Dana, STOC 1998 ²Goldreich and Dana, ECCC report 2001 ³Adriaens and Apers, Arxiv 2021

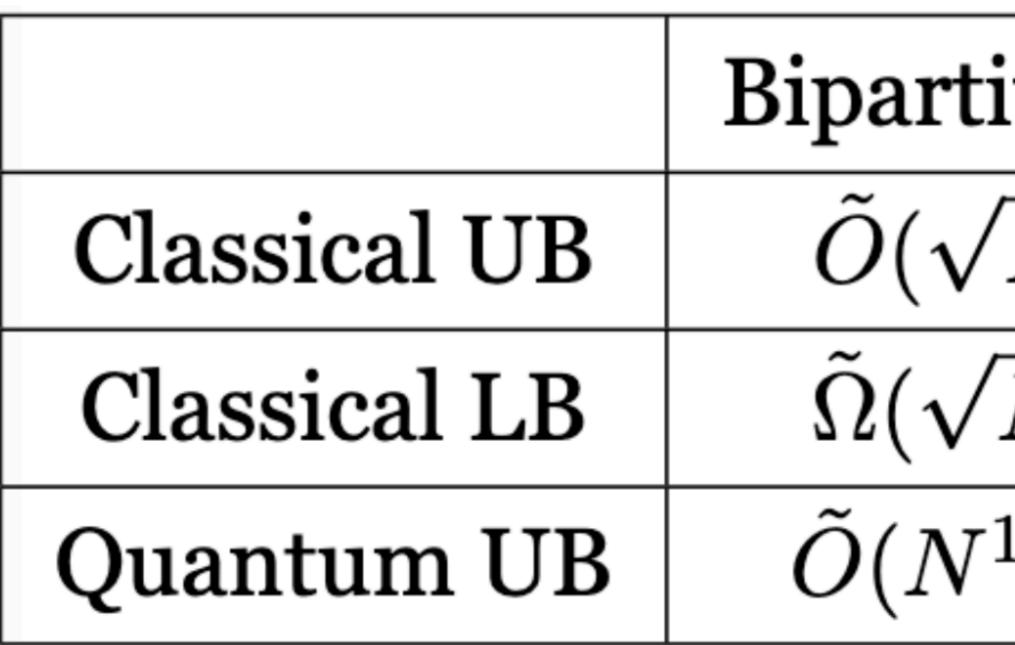
iteness	Expander	Cluster
(N) 1	$ ilde{O}(\sqrt{N})$ 2	$\tilde{O}(\sqrt{2})$
(<u>N</u>) 4	$\tilde{\Omega}(\sqrt{N})$ 5	?
1/3) 6	$ ilde{O}(N^{1/3})^{6}$?

⁴Goldreich and Dana, STOC 1997

⁵Goldreich and Dana, ECCC report 2001 6 Ambainis, Childs, and Liu, Proc. RANDOM 2011.

ability				
$\overline{N})$	3			

Our Contributions

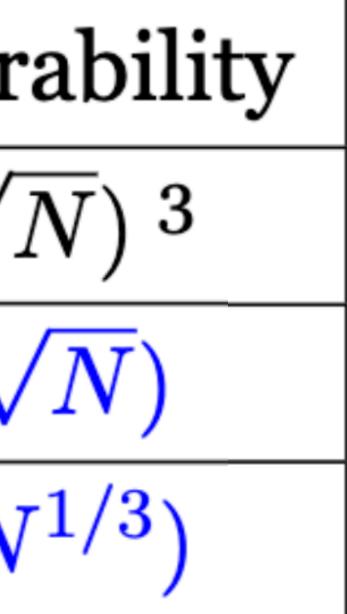


Goldreich and Dana, STOC 1998 ²Goldreich and Dana, ECCC report 2001 ³Adriaens and Apers, Arxiv 2021

iteness	Expander	Cluster
(N) 1	$\tilde{O}(\sqrt{N})^2$	$\tilde{O}(\sqrt{2})$
(<u>N</u>) 4	$\tilde{\Omega}(\sqrt{N})$ 5	$\tilde{\Omega}($
$^{1/3}) 6$	$ ilde{O}(N^{1/3})^{6}$	$\tilde{O}(N$

⁴Goldreich and Dana, STOC 1997

⁵Goldreich and Dana, ECCC report 2001 6 Ambainis, Childs, and Liu, Proc. RANDOM 2011.



Outlines

Motivation and our main results

Classical clusterability testing query lower bound

Quantum clusterability testing algorithm

Classical Query Lower Bound for Testing Clusterability

Theorem 2.1

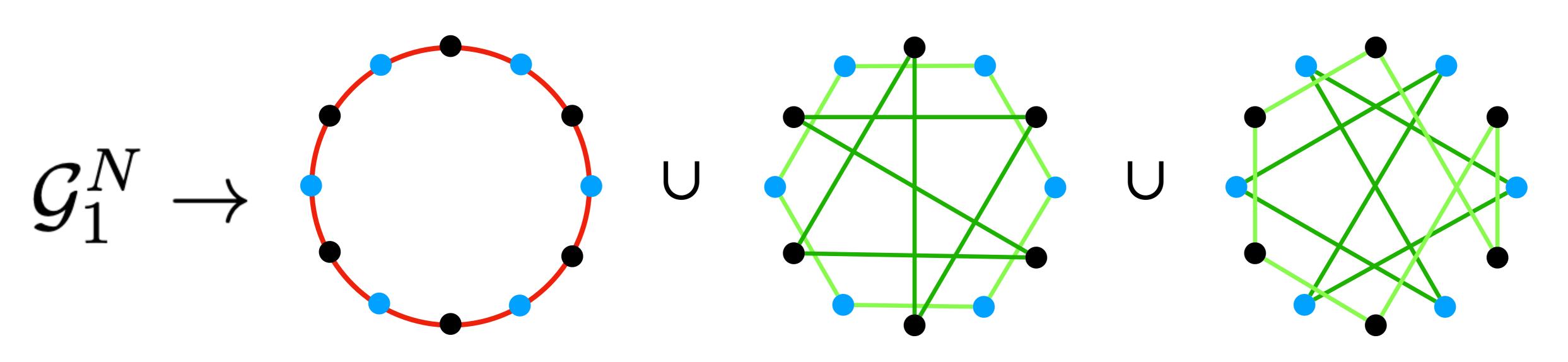
- **O** To prove the query lower bound \rightarrow design a **hard** instance. (Lemma 2.2): Construct two sets of graphs \mathcal{G}_1^N and \mathcal{G}_2^N s.t.
 - $\mathcal{G}_1^N \rightarrow \text{clusterable}$
 - $\mathcal{G}_2^N \to \epsilon$ -far from clusterable W.H.P.
- (3) (Lemma 2.3): \mathcal{G}_1^N and \mathcal{G}_2^N can not be distinguished within $\tilde{\Omega}(\sqrt{N})$ queries for any classical algorithm.

Any classical clusterability tester requires $\tilde{\Omega}(\sqrt{N})$ queries.

Constructing two sets of graphs

Lemma 2.2

the graph in \mathcal{G}_1^N are all clusterable.

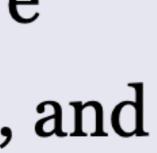


There exist two families of graphs \mathcal{G}_i^N such that the graph in \mathcal{G}_2^N are 0.01-far from clusterable with probability at least $1 - \exp(-\Omega(N))$, and

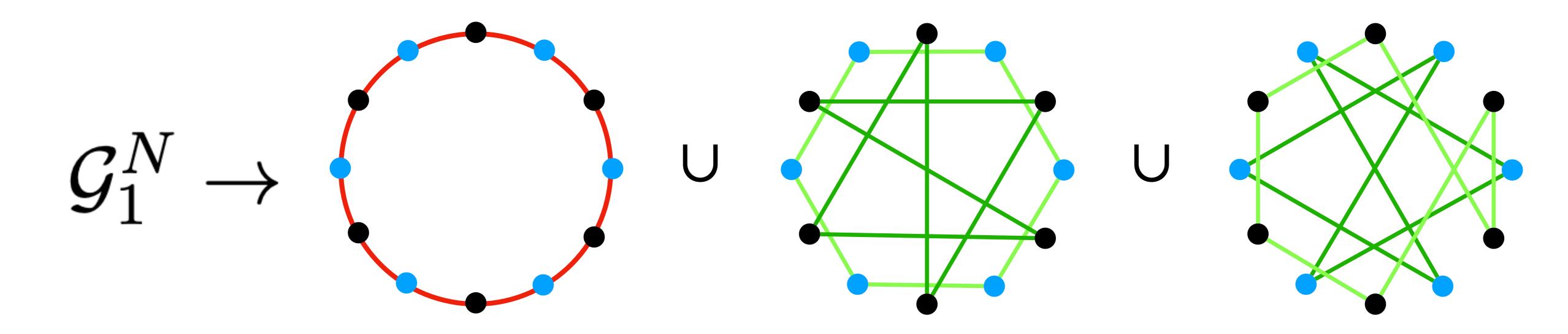
Negative sign

Odd parity

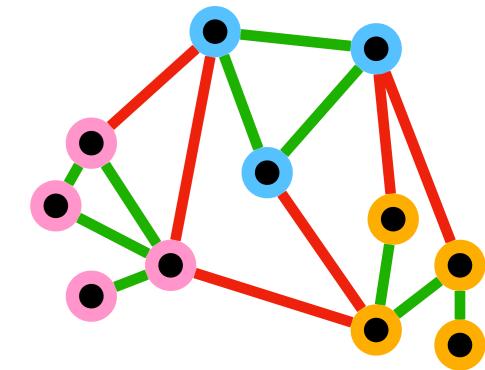
Even parity



The graphs in \mathcal{G}_2^N are clusterable obviously since: 2



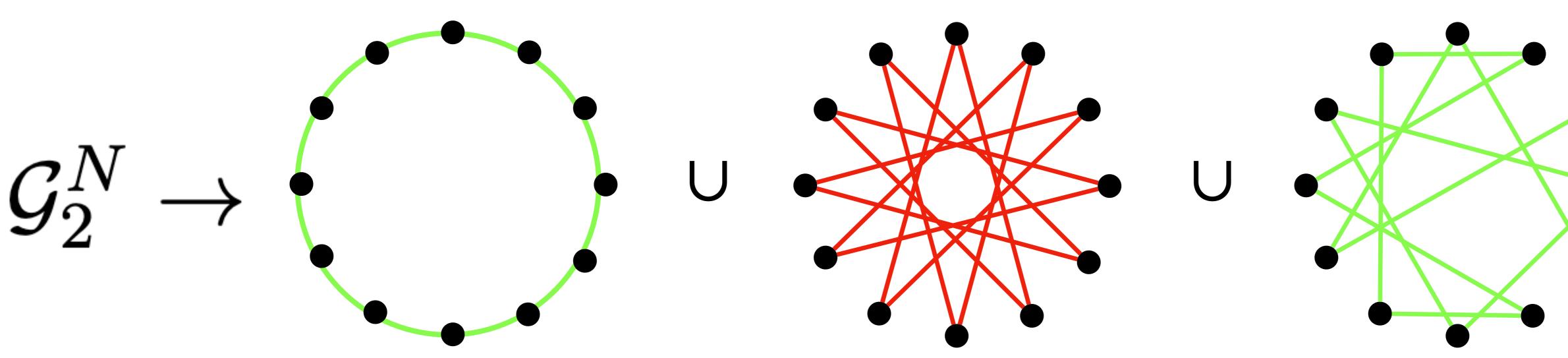
- The positive edges connect the vertices with the same parity.
- The negative edges connect the vertices with the distinct parity.



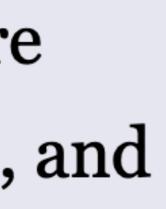
Constructing two sets of graphs

Lemma 2.2

the graph in \mathcal{G}_1^N are all clusterable.

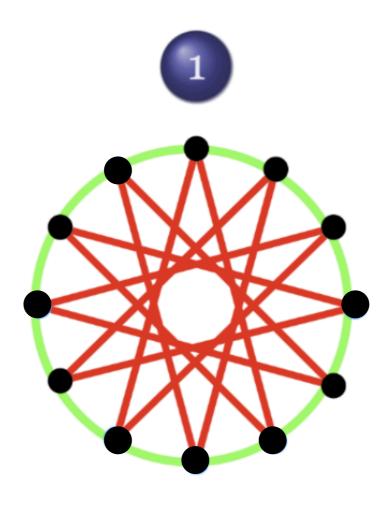


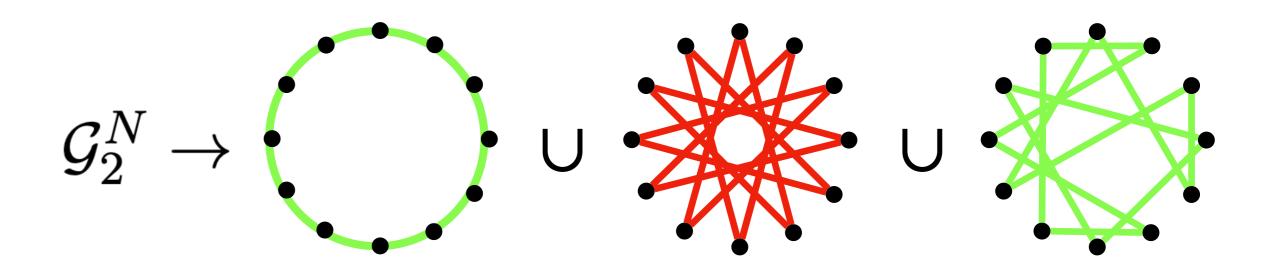
There exist two families of graphs \mathcal{G}_i^N such that the graph in \mathcal{G}_2^N are 0.01-far from clusterable with probability at least $1 - \exp(-\Omega(N))$, and



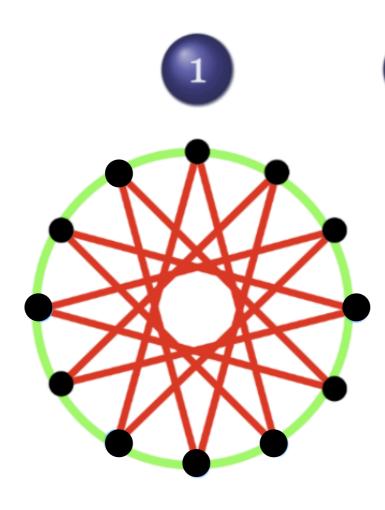
Positive sign Negative sign

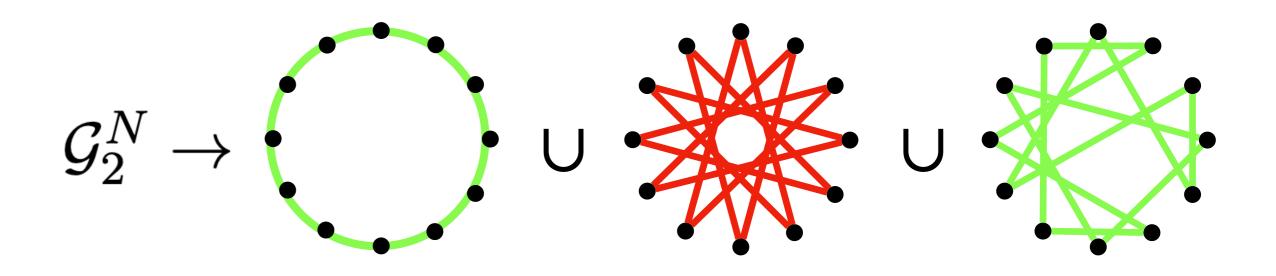
• Every graph in \mathcal{G}_1^N is not clusterable.

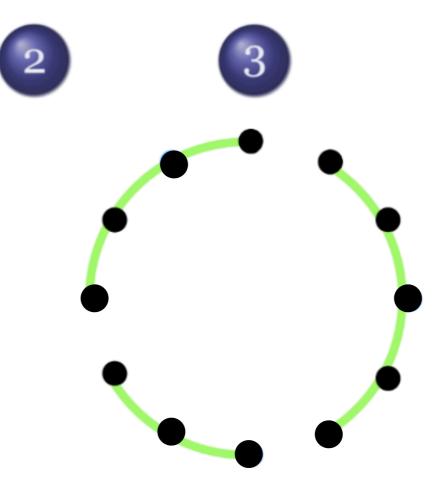




- Every graph in \mathcal{G}_1^N is not clusterable.
- 2 Make these graphs clusterable \rightarrow Must remove some cycle edges. 3 Assume $x < \epsilon Nd$ cycle edges are removed.
- - $\rightarrow x$ cycle components.



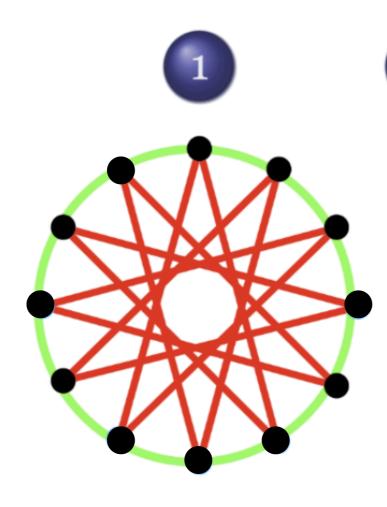


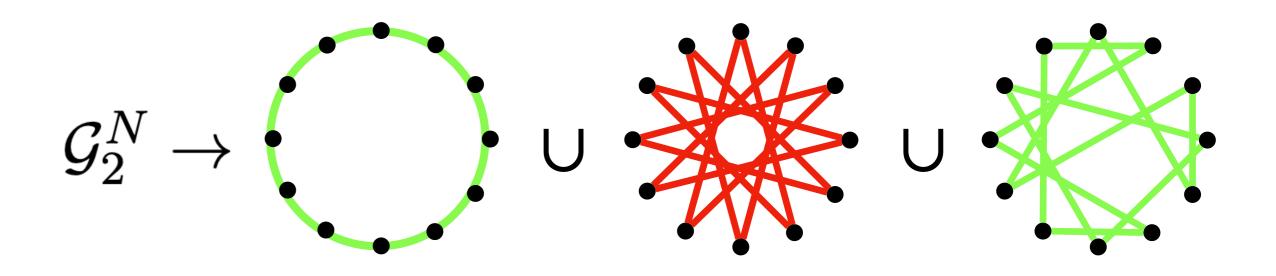


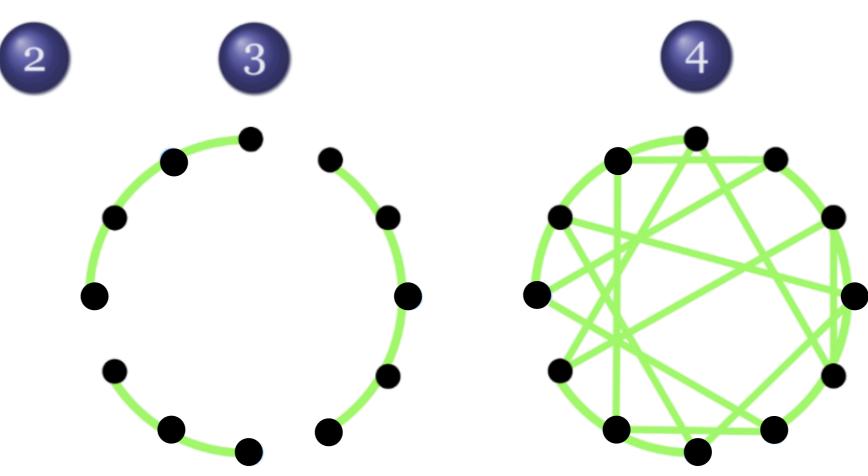
- Every graph in \mathcal{G}_2^N is not clusterable.
- 2 Make these graphs clusterable \rightarrow Must remove some cycle edges.
- 3 Assume $x < \epsilon Nd$ cycle edges are removed.

 $\rightarrow x$ cycle components.

The positive matching edges can connect these cycle components.



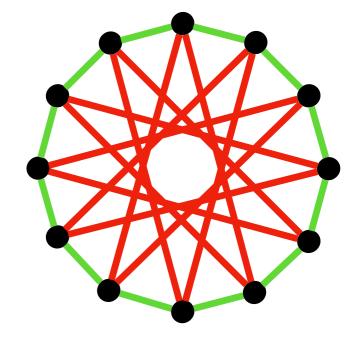




Lemma 2.3

• Sample a graph in \mathcal{G}_1^N or \mathcal{G}_2^N

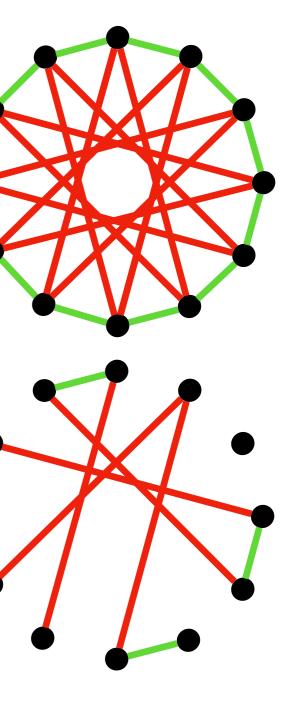
No algorithm can distinguish \mathcal{G}_1^N and \mathcal{G}_2^N within $\tilde{\Omega}(\sqrt{N})$ queries.



Lemma 2.3

• Sample a graph in \mathcal{G}_1^N or \mathcal{G}_2^N • The algorithm makes \sqrt{N} queries (explores \sqrt{N} edges)

No algorithm can distinguish \mathcal{G}_1^N and \mathcal{G}_2^N within $\tilde{\Omega}(\sqrt{N})$ queries.

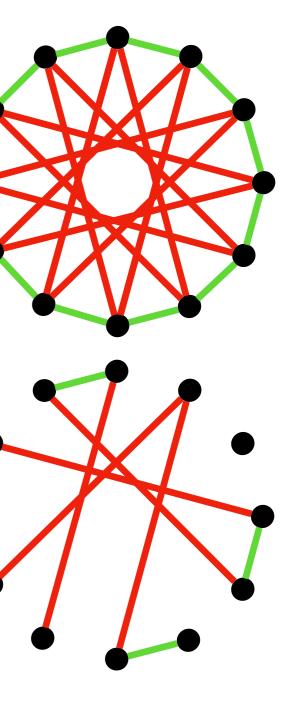


Lemma 2.3

• Sample a graph in \mathcal{G}_1^N or \mathcal{G}_2^N

No algorithm can distinguish \mathcal{G}_1^N and \mathcal{G}_2^N within $\tilde{\Omega}(\sqrt{N})$ queries.

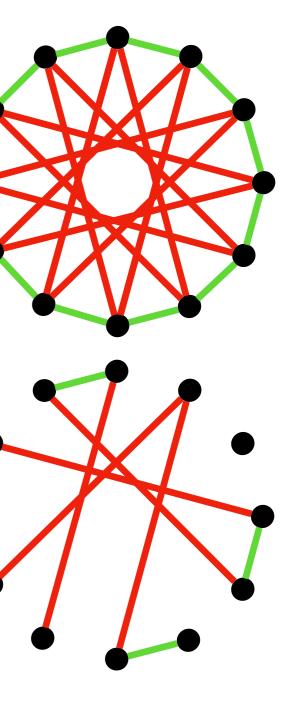
• The algorithm makes \sqrt{N} queries (explores \sqrt{N} edges) • Find no cycle: algorithm can not distinguish \mathcal{G}_1^N and \mathcal{G}_2^N



Lemma 2.3

- Sample a graph in \mathcal{G}_1^N or \mathcal{G}_2^N
- The algorithm makes \sqrt{N} queries (explores \sqrt{N} edges) • Find no cycle: algorithm can not distinguish \mathcal{G}_1^N and \mathcal{G}_2^N • Find a cycle: with a probability < 1/10 by using \sqrt{N} queries

No algorithm can distinguish \mathcal{G}_1^N and \mathcal{G}_2^N within $\tilde{\Omega}(\sqrt{N})$ queries.



Classical Query Lower Bound for Testing Clusterability

Theorem 2.1

- **O** To prove the query lower bound \rightarrow design a **hard** instance. (Lemma 2.2): Construct two sets of graphs \mathcal{G}_1^N and \mathcal{G}_2^N s.t.
 - $\mathcal{G}_1^N \rightarrow \text{clusterable}$
 - $\mathcal{G}_2^N \to \epsilon$ -far from clusterable W.H.P.
- (3) (Lemma 2.3): \mathcal{G}_1^N and \mathcal{G}_2^N can not be distinguished within $\tilde{\Omega}(\sqrt{N})$ queries for any classical algorithm.

Any classical clusterability tester requires $\tilde{\Omega}(\sqrt{N})$ queries.

Outlines

Motivation and our main results

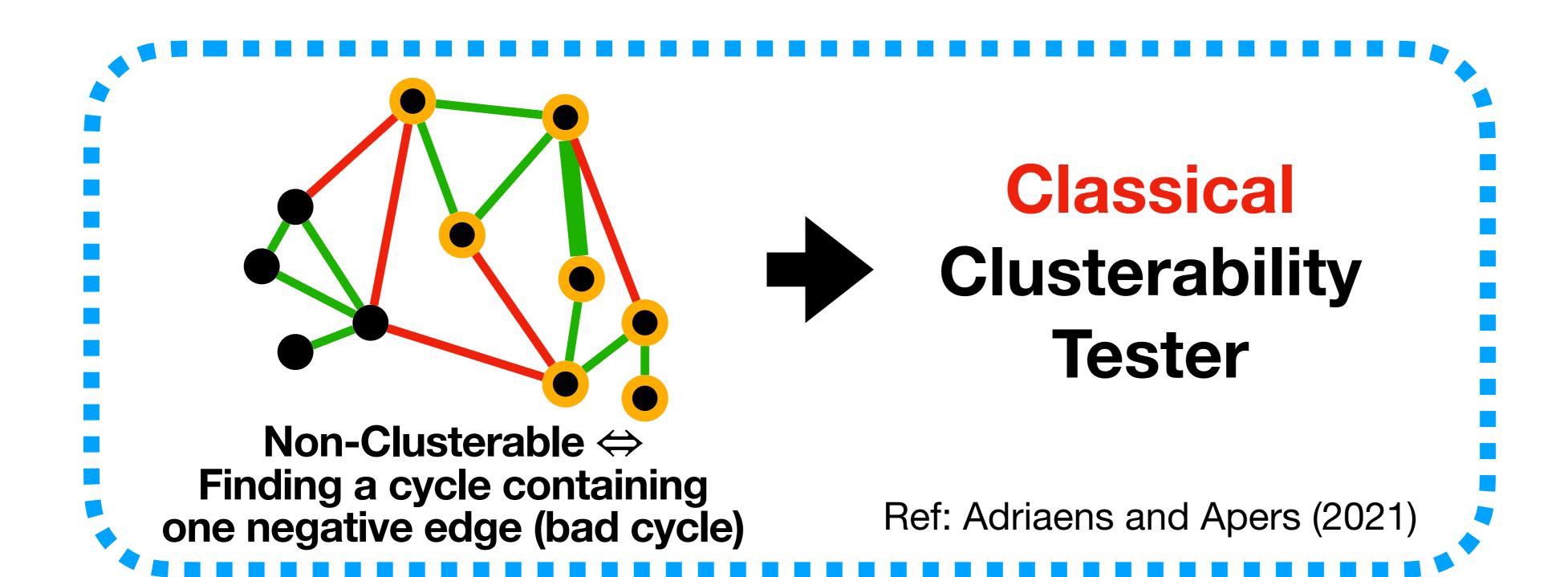
Classical clusterability testing query lower bound

Quantum clusterability testing algorithm

Quantum Clusterability Testing Algorithm

Theorem 3.1

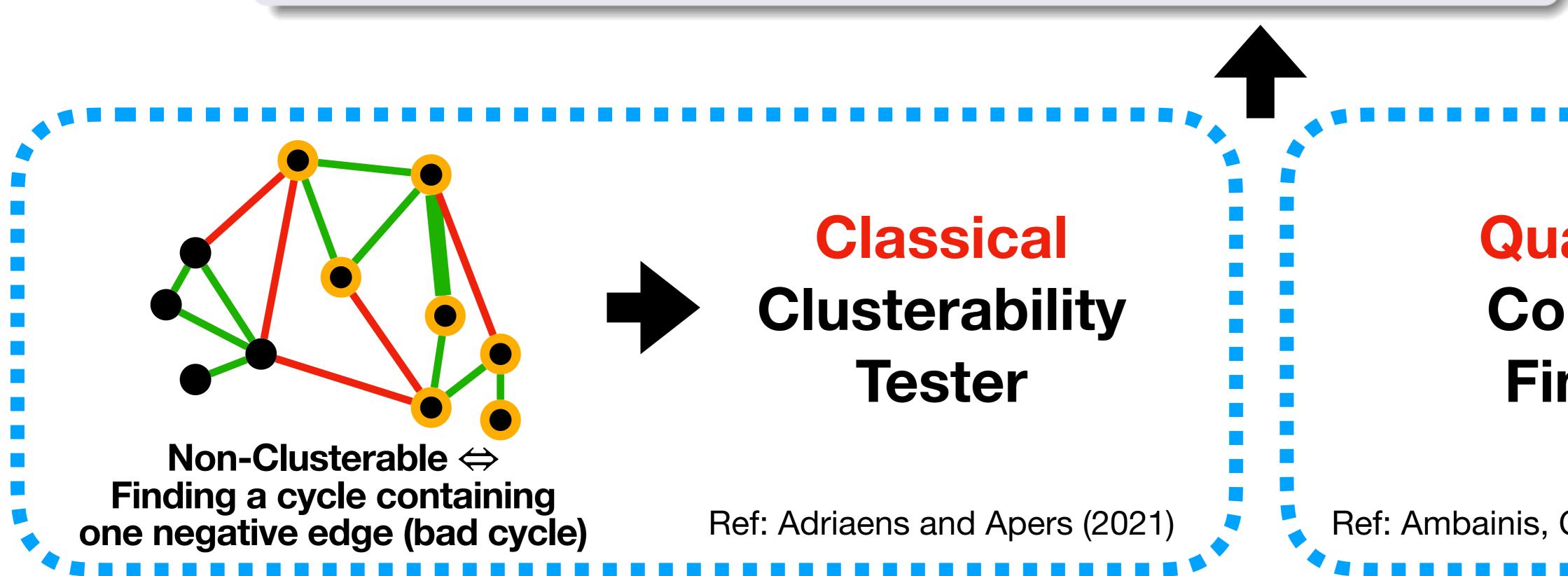
There exists a quantum algorithm for testing clusterability with $\tilde{O}(N^{1/3})$ queries.



Quantum Clusterability Testing Algorithm

Theorem 3.1

There exists a quantum algorithm for testing clusterability with $\tilde{O}(N^{1/3})$ queries.



Ref: Ambainis, Childs, and Liu (2011)

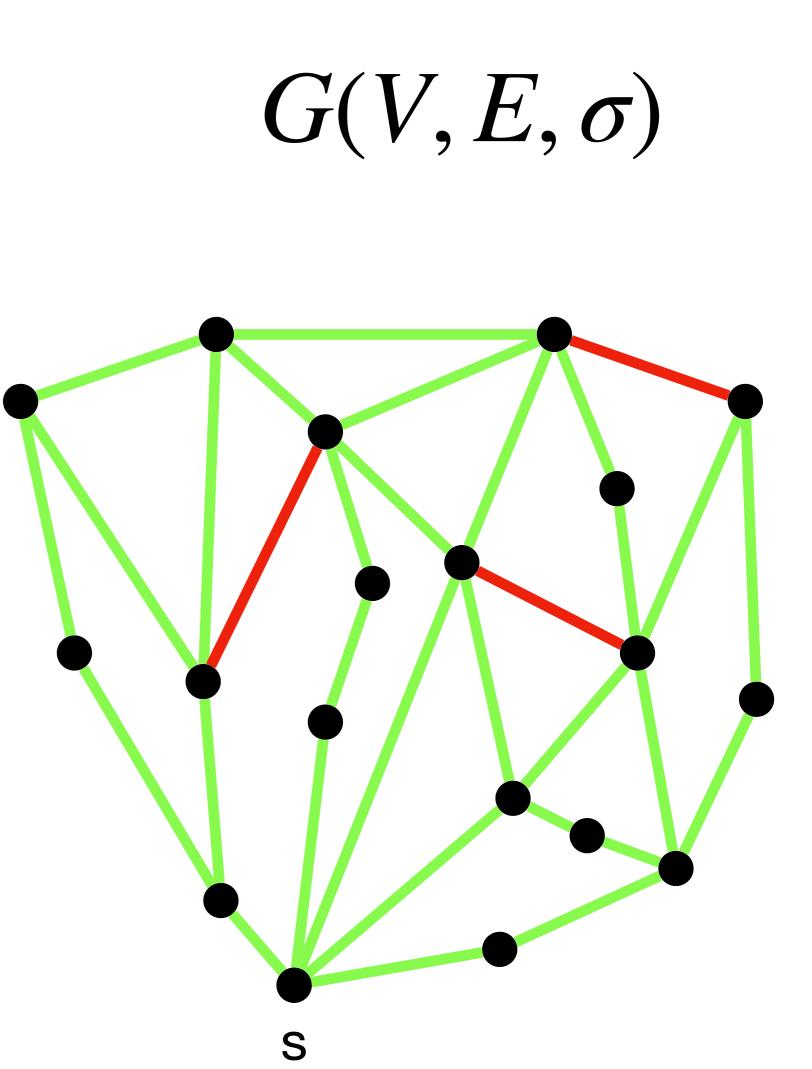
Collision Finding

Quantum

Classical Clusterability Tester Random walk algorithm

- Select one starting vertex s
- Implement \Box random walks with length \triangle
- Bad cycle checking (This step can be speedup by quantum)

Lemma 3.2 (Adriaens and Apers (2021)) Set $\Box = O(\sqrt{N})$ and $\triangle = \operatorname{poly}(\epsilon^{-1}) \rightarrow$ **Finding a bad cycle** iff ϵ -far from clusterable W.H.P.

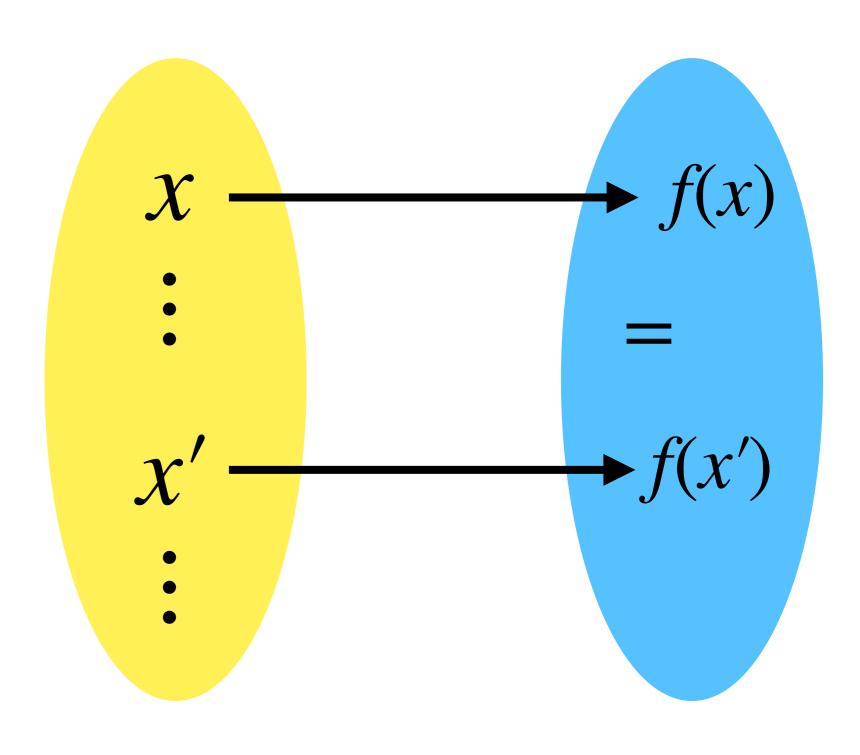


Quantum Collision Finding \rightarrow **Quantum Clusterability Tester**

Lemma 3.2 (Quantum collision finding) Given a function $f: X \to Y$, and a symmetric binary relation $R \subseteq Y \times Y$. There exists a quantum algorithm that can find a distinct pair $x, x' \in X$ s.t. $(f(x), f(x')) \in R$ within $O(|X|^{2/3})$ queries to f.

• Define a function $f:(i,j) \mapsto f$ • $((v, v_{neb}), (v', v'_{neb})) \in R \Leftrightarrow \text{find a bad cycle}$

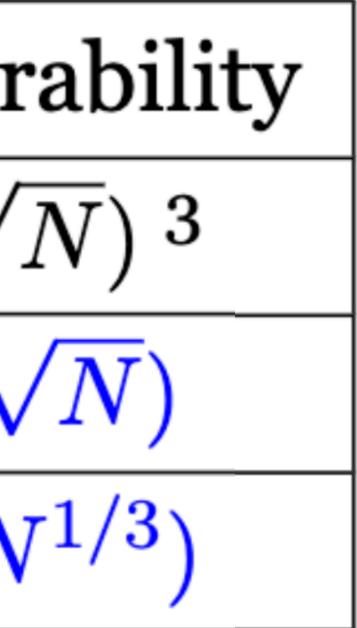
$$\rightarrow (v, v_{neb})$$



Conclusion

We confirmed the quantum advantage on testing clusterability.

	Bipartiteness	Expander	Cluster
Classical UB	$\tilde{O}(\sqrt{N})^{1}$	$\tilde{O}(\sqrt{N})^2$	$\tilde{O}(\sqrt{2})$
Classical LB	$ ilde{\Omega}(\sqrt{N})$ 4	$\tilde{\Omega}(\sqrt{N})$ 5	$\tilde{\Omega}($
Quantum UB	$ ilde{O}(N^{1/3})$ 6	$ ilde{O}(N^{1/3})^{6}$	$\tilde{O}(N$



Thanks for the listening