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Applications of Graph Properties

Clusterability Bipartite Expander
(Social network) (Web search engines) (MCMC converge rate)
Friend ﬂ Queries
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Clusterability for Signed Graphs

Definition 1.2 (Signed graph)
A signed graph G(V, FE,o0) is a

graph whose each edge is assigned by a

mapping o : £ — {+, —}.
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Bounded Degree Graph Query Model

* Given the adjacent list of a graph with
degree bound d.

» Query to the list —> Explore this graph.

« One query — one edge
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Bounded Degree Graph Query Model

* Given the adjacent list of a graph with
degree bound d.

» Query to the list —> Explore this graph.

« One query — one edge

Learn the clusterability without error — require O(/N) queries.

Test the clusterability In an approximated manner with less queries?



Graph Property Testing

An approximated algorithm

A graph property P tester is a randomized algorithm:
Input:

© Query access to a graph G(V, E, o) with maximum degree d and |V| = N.
@ An error parameter e.

Output with probability at least 2/3:

@ Remove or add at least e Nd edges to make G satisfy P — REJECT
(e-far from P)

@ Otherwise — ACCEPT



Previous Works and Open Problems

. Bipartiteness . Expander . Clusterability
' Classical UB | O(VN)! . O(VN) 2 . O(VN)3 .
| Classical LB | Q(vVN) 4 . Q(v/N) ® ?
' Quantum UB | O(N'/3)6 | O(N1/3)6 | ?

1Goldreich and Dana, STOC 1998
*Goldreich and Dana, ECCC report 2001
3 Adriaens and Apers, Arxiv 2021
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Our Contributions
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Classical Query Lower Bound for Testing
Clusterability

Theorem 2.1

Any classical clusterability tester requires Q(v/N) queries.

v

© To prove the query lower bound — design a hard instance.

@ (Lemma 2.2): Construct two sets of graphs G;* and G, s.t.

o GV — clusterable
o G2V — e-far from clusterable W.H.P.

© (Lemma 2.3): G and G’ can not be distinguished within Q(v/N)

queries for any classical algorithm.



Constructing two sets of graphs

Lemma 2.2

There exist two families of graphs G;V such that the graph in G2 are
0.01-far from clusterable with probability at least 1 — exp(—£2(V)), and

the graph in GV are all clusterable.
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Proof sketch £\

The graphs in G," are clusterable obviously since:
© The positive edges connect the vertices with the same parity.

© The negative edges connect the vertices with the distinct parity.




Constructing two sets of graphs

Lemma 2.2

There exist two families of graphs G;" such that the graph in G5’ are
0.01-far from clusterable with probability at least 1 — exp(—€2(V)), and

the graph in G;' are all clusterable.
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Proof sketch

© Every graph in G¥' is not clusterable.




Proof sketch G = U

© Every graph in G¥' is not clusterable.
© Make these graphs clusterable —+ Must remove some cycle edges.

© Assume z < eNd cycle edges are removed.

— x cycle components.




Proof sketch G =t U

© Every graph in G,' is not clusterable.
© Make these graphs clusterable —+ Must remove some cycle edges.

© Assume z < eNd cycle edges are removed.

— x cycle components.

© The positive matching edges can connect these cycle components.




Two sets of graphs are indistinguishable
Proof sketch

Lemma 2.3
No algorithm can distinguish GV and G within Q(+/N) queries.

e Sample a graph in G{" or G5
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Two sets of graphs are indistinguishable
Proof sketch

Lemma 2.3
No algorithm can distinguish GV and G within Q(+/N) queries.

e Sample a graph in G;' or G5
o The algorithm makes /N queries (explores v N edges)

o Find no cycle: algorithm can not distinguish G{¥ and G2

o Find a cycle: with a probability < 1/10 by using v/ N queries



Classical Query Lower Bound for Testing
Clusterability

Theorem 2.1

Any classical clusterability tester requires Q(v/N) queries.
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queries for any classical algorithm.
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Quantum Clusterability Testing Algorithm

Theorem 3.1
There exists a quantum algorithm for testing clusterability with

O(N/3) queries.
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Quantum Clusterability Testing Algorithm

Theorem 3.1
There exists a quantum algorithm for testing clusterability with

O(N/3) queries.
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Classical Clusterability Tester

Random walk algorithm

G(V, E, o)

@ Select one starting vertex s

@ Implement [J random walks with length A

®
@ Bad cycle checking % \
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(This step can be speedup by quantum) / \ \
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Lemma 3.2 (Adriaens and Apers (2021))
Set 0 = O(vN) and A = poly(e~!) — ° ¢

S

Finding a bad cycle iff e-far from clusterable W.H.P. )




Quantum Collision Finding —
Quantum Clusterability Tester

Lemma 3.2 (Quantum collision finding)
Given a function f : X — Y, and a symmetric binary

relation R C Y x Y. There exists a quantum
algorithm that can find a distinct pair z, 2’ € X s.t.
(f(z), f (")) € Rwithin O (| X|?/3) queries to f.

@ Define a function f : (z‘, j) — (’U, ’Uneb)

@ ((v,vpep), (v',v, ,)) € R < find a bad cycle

X —— (%)

x —/x)



Conclusion

We confirmed the quantum advantage on testing clusterability.

. Bipartiteness . Expander ' Clusterability
" Classical UB | O(VN) 1 . O(V/N) 2 . O(V/N) 3
Classical LB | Q(WN)4 | QWN)5 | QW/N)
' Quantum UB | O(N1/3)6 - O(N1/3)6 - O(N1/3)




Thanks for the listening



